Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.7/111
Título: Bayesian analysis of allelic penetrance models for complex binary traits
Autor: Sepúlveda, Nuno
Paulino, Carlos Daniel
Penha-Gonçalves, Carlos
Palavras-chave: Incomplete penetrance
Susceptibility genes
Data: 2009
Editora: Elsevier
Citação: Sepúlveda, N., Paulino, C.D. and Penha Gonçalves, C. (2009). Bayesian analysis of allelic penetrance models for complex binary traits. Computational Statistics & Data Analysis 53 (4) : 1271-1283
Resumo: Complex binary traits result from an intricate network of genetic and environmental factors. To aid their genetic dissection, several generalized linear models have been described to detect interaction between genes. However, it is recognized that these models have limited genetic interpretation. To overcome this problem, the allelic penetrance approach was proposed to model the action of a dominant or a recessive allele at a single locus, and to describe two-locus independent, inhibition, and cumulative actions. Classically, a recessive inheritance requires the expression of both recessive alleles in homozygotes to obtain the phenotype (type I recessiveness). In previous work, recessiveness was defined alternatively as a situation where a recessive allele is able to express the phenotype when the dominant allele is not active (type II recessiveness). Both definitions of recessiveness are then discussed under the allelic penetrance models. Bayesian methods are applied to analyze two data sets: one regarding the effect of the haplotype [HLA-B8, SC01, DR3] on the inheritance of IgD and IgG4 immunoglobulin deficiencies in humans, and other related to two-locus action in the control of Listeria infection susceptibility in mice.
Peer review: Yes
URI: http://hdl.handle.net/10400.7/111
ISSN: 0167-9473
Versão do Editor: http://dx.doi.org/10.1016/j.csda.2008.10.038
Aparece nas colecções:DG - Artigos em revistas científicas

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Sepúlveda_Comput.Stat.Data.Anal_2009_post-print.pdfmain article1,02 MBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.