Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.7/45
Título: Examples of forced symmetry-breaking to homoclinic cycles in three-dimensional Euclidean-invariant systems
Autor: Parker, M. J.
Stewart, I. N.
Gomes, M. G. M.
Palavras-chave: forced symmetry-breaking
homoclinic
Euclidean symmetry
reaction-diffusion-systems
oxygen oscillating reaction
Data: Jan-2008
Citação: Parker, M.J., Stewart, I., Gomes, M.G.M.(2008)."Examples of forced symmetry-breaking to homoclinic cycles in three-dimensional Euclidean-invariant systems". International Journal of Bifurcation and Chaos.18(1): 83-107
Resumo: We study perturbations of cubic planforms, proving there exists perturbations with homoclinic cycles between persistent steady states. Our results do not depend on the representation of the symmetry group of the lattice, and are thus quite general. . The problem is studied using group theory rather than direct methods. We use the abstract action of the symmetry group of the perturbation on the group orbit to determine the existence of zero- and one-dimensional flow-invariant subspaces. The residual symmetry of the perturbation constrains the flows on these subspaces and, in certain cases, homoclinic cycles are guaranteed to exist. Cubic planforms are physically interesting due to their relevance to certain physical systems. Applications to reaction-diffusion systems, nonlinear optical systems and the polyacrylamide methylene blue oxygen reaction are discussed
URI: http://hdl.handle.net/10400.7/45
Aparece nas colecções:CD - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Parker_IJBC2008.pdf467,46 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.