Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.7/483
Título: TherMos: Estimating protein-DNA binding energies from in vivo binding profiles
Autor: Sun, W.
Hu, X.
Lim, M. H. K.
Ng, C. K. L.
Choo, S. H.
Castro, D. S.
Drechsel, D.
Guillemot, F.
Kolatkar, P. R.
Jauch, R.
Prabhakar, S.
Palavras-chave: Chromatin Immunoprecipitation
DNA-Binding Proteins
High-Throughput Nucleotide Sequencing
Kruppel-Like Transcription Factors
Mutation
Protein Binding
Receptors, Estrogen
Sequence Analysis, DNA
Thermodynamics
Transcription Factors
Algorithms
Data: 19-Mar-2013
Editora: Oxford University Press
Citação: Wenjie Sun, Xiaoming Hu, Michael H. K. Lim, Calista K. L. Ng, Siew Hua Choo, Diogo S. Castro, Daniela Drechsel, François Guillemot, Prasanna R. Kolatkar, Ralf Jauch, and Shyam Prabhakar TherMos: Estimating protein–DNA binding energies from in vivo binding profiles Nucl. Acids Res. (2013) 41 (11): 5555-5568 first published online April 16, 2013 doi:10.1093/nar/gkt250
Resumo: Accurately characterizing transcription factor (TF)-DNA affinity is a central goal of regulatory genomics. Although thermodynamics provides the most natural language for describing the continuous range of TF-DNA affinity, traditional motif discovery algorithms focus instead on classification paradigms that aim to discriminate 'bound' and 'unbound' sequences. Moreover, these algorithms do not directly model the distribution of tags in ChIP-seq data. Here, we present a new algorithm named Thermodynamic Modeling of ChIP-seq (TherMos), which directly estimates a position-specific binding energy matrix (PSEM) from ChIP-seq/exo tag profiles. In cross-validation tests on seven genome-wide TF-DNA binding profiles, one of which we generated via ChIP-seq on a complex developing tissue, TherMos predicted quantitative TF-DNA binding with greater accuracy than five well-known algorithms. We experimentally validated TherMos binding energy models for Klf4 and Esrrb, using a novel protocol to measure PSEMs in vitro. Strikingly, our measurements revealed strong non-additivity at multiple positions within the two PSEMs. Among the algorithms tested, only TherMos was able to model the entire binding energy landscape of Klf4 and Esrrb. Our study reveals new insights into the energetics of TF-DNA binding in vivo and provides an accurate first-principles approach to binding energy inference from ChIP-seq and ChIP-exo data.
Peer review: yes
URI: http://hdl.handle.net/10400.7/483
DOI: 10.1093/nar/gkt250
Versão do Editor: http://nar.oxfordjournals.org/content/41/11/5555.long
Aparece nas colecções:MN - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Nucl. Acids Res.-2013-Sun-5555-68.pdfartigo principal14,82 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.