Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.7/84
Título: Muller's ratchet in random graphs and scale free networks
Autor: Campos, P.R.A.
Combadão, J.
Dionísio, F.
Gordo, I.
Palavras-chave: Algorithms
Evolution
Extinction, Biological
Genetics, Population
Models, Biological
Population Growth
Reproduction, Asexual/genetics
Speed
Accumulation
Spread
Data: Out-2006
Editora: American Physical Society
Citação: Campos PRA, Combadão J , Dionisio F. and I. Gordo (2006) Muller's ratchet in random graphs and scale free networks Phys. Rev. E 74, 042901
Resumo: Muller's ratchet is an evolutionary process that has been implicated in the extinction of asexual species, the evolution of mitochondria, the degeneration of the Y chromosome, the evolution of sex and recombination and the evolution of microbes. Here we study the speed of Muller's ratchet in a population subdivided into many small subpopulations connected by migration, and distributed on a network. We compare the speed of the ratchet in two distinct types of topologies: scale free networks and random graphs. The difference between the topologies is noticeable when the average connectivity of the network and the migration rate is large. In this situation we observe that the ratchet clicks faster in scale free networks than in random graphs. So contrary to intuition, scale free networks are more prone to loss of genetic information than random graphs. On the other hand, we show that scale free networks are more robust to the random extinction than random graphs. Since these complex networks have been shown to describe well real-life systems, our results open a framework for studying the evolution of microbes and disease epidemics.
URI: http://hdl.handle.net/10400.7/84
ISSN: 1539-3755
Aparece nas colecções:EB - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Gordo, Isabel et al, Phys. Rev 2006.pdf84,17 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.