I- Artigos
Permanent URI for this collection
Browse
Browsing I- Artigos by Author "Agarwal, Anupam"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Ferritin H Deficiency in Myeloid Compartments Dysregulates Host Energy Metabolism and Increases Susceptibility to Mycobacterium tuberculosis InfectionPublication . Reddy, Vineel P.; Chinta, Krishna C.; Saini, Vikram; Glasgow, Joel N.; Hull, Travis D.; Traylor, Amie; Rey-Stolle, Fernanda; Soares, Miguel P.; Madansein, Rajhmun; Rahman, Md Aejazur; Barbas, Coral; Nargan, Kievershen; Naidoo, Threnesan; Ramdial, Pratistadevi K.; George, James F.; Agarwal, Anupam; Steyn, Adrie J. C.Iron is an essential factor for the growth and virulence of Mycobacterium tuberculosis (Mtb). However, little is known about the mechanisms by which the host controls iron availability during infection. Since ferritin heavy chain (FtH) is a major intracellular source of reserve iron in the host, we hypothesized that the lack of FtH would cause dysregulated iron homeostasis to exacerbate TB disease. Therefore, we used knockout mice lacking FtH in myeloid-derived cell populations to study Mtb disease progression. We found that FtH plays a critical role in protecting mice against Mtb, as evidenced by increased organ burden, extrapulmonary dissemination, and decreased survival in Fth−/− mice. Flow cytometry analysis showed that reduced levels of FtH contribute to an excessive inflammatory response to exacerbate disease. Extracellular flux analysis showed that FtH is essential for maintaining bioenergetic homeostasis through oxidative phosphorylation. In support of these findings, RNAseq and mass spectrometry analyses demonstrated an essential role for FtH in mitochondrial function and maintenance of central intermediary metabolism in vivo. Further, we show that FtH deficiency leads to iron dysregulation through the hepcidin–ferroportin axis during infection. To assess the clinical significance of our animal studies, we performed a clinicopathological analysis of iron distribution within human TB lung tissue and showed that Mtb severely disrupts iron homeostasis in distinct microanatomic locations of the human lung. We identified hemorrhage as a major source of metabolically inert iron deposition. Importantly, we observed increased iron levels in human TB lung tissue compared to healthy tissue. Overall, these findings advance our understanding of the link between iron-dependent energy metabolism and immunity and provide new insight into iron distribution within the spectrum of human pulmonary TB. These metabolic mechanisms could serve as the foundation for novel host-directed strategies.
- Macrophage and epithelial cell H-ferritin expression regulates renal inflammationPublication . Bolisetty, Subhashini; Zarjou, Abolfazl; Hull, Travis D.; Traylor, Amie M.; Perianayagam, Anjana; Joseph, Reny; Kamal, Ahmed I.; Arosio, Paolo; Soares, Miguel P.; Jeney, Viktoria; Balla, Jozsef; George, James F.; Agarwal, AnupamInflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared with wild-type (FtH(+/+)) controls. However, tubular FtH deletion led to a marked increase in proinflammatory macrophages. Furthermore, injured kidneys from FtH(PT-/-) mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared with kidneys from FtH(+/+) and FtH(LysM-/-) mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscore the critical role of FtH in tubular-macrophage cross-talk during kidney injury.