Browsing by Author "Chikhi, Lounes"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithmsPublication . Greminger, Maja P; Stölting, Kai N; Nater, Alexander; Goossens, Benoit; Arora, Natasha; Bruggmann, Rémy; Patrignani, Andrea; Nussberger, Beatrice; Sharma, Reeta; Kraus, Robert H S; Ambu, Laurentius N; Singleton, Ian; Chikhi, Lounes; van Schaik, Carel P; Krützen, MichaelHigh-throughput sequencing has opened up exciting possibilities in population and conservation genetics by enabling the assessment of genetic variation at genome-wide scales. One approach to reduce genome complexity, i.e. investigating only parts of the genome, is reduced-representation library (RRL) sequencing. Like similar approaches, RRL sequencing reduces ascertainment bias due to simultaneous discovery and genotyping of single-nucleotide polymorphisms (SNPs) and does not require reference genomes. Yet, generating such datasets remains challenging due to laboratory and bioinformatical issues. In the laboratory, current protocols require improvements with regards to sequencing homologous fragments to reduce the number of missing genotypes. From the bioinformatical perspective, the reliance of most studies on a single SNP caller disregards the possibility that different algorithms may produce disparate SNP datasets.
- History of the invasive African olive tree in Australia and Hawaii: evidence for sequential bottlenecks and hybridization with the Mediterranean olivePublication . Besnard, Guillaume; Dupuy, Jérémy; Larter, Maximilien; Cuneo, Peter; Cooke, David; Chikhi, LounesHumans have introduced plants and animals into new continents and islands with negative effects on local species. This has been the case of the olive that was introduced in Australia, New Zealand and Pacific islands where it became invasive. Two subspecies were introduced in Australia, and each successfully invaded a specific area: the African olive in New South Wales (NSW) and the Mediterranean olive in South Australia. Here, we examine their origins and spread and analyse a large sample of native and invasive accessions with chloroplast and nuclear microsatellites. African olive populations from the invaded range exhibit two South African chlorotypes hence supporting an introduction from South Africa, while populations from South Australia exhibit chlorotypes of Mediterranean cultivars. Congruently, nuclear markers support the occurrence of two lineages in Australia but demonstrate that admixture took place, attesting that they hybridized early after introduction. Furthermore, using an approximate Bayesian computation framework, we found strong support for the serial introduction of the African olive from South Africa to NSW and then from NSW to Hawaii. The taxon experienced successive bottlenecks that did not preclude invasion, meaning that rapid decisions need to be taken to avoid naturalization where it has not established a large population yet.
- STR-based genetic structure of the Berber population of Bejaia (Northern Algeria) and its relationships to various ethnic groupsPublication . Amir, Nadir; Sahnoune, Mohamed; Chikhi, Lounes; Atmani, DjebbarPatterns of genetic variation in human populations have been described for decades. However, North Africa has received little attention and Algeria, in particular, is poorly studied, Here we genotyped a Berber-speaking population from Algeria using 15 short tandem repeat (STR) loci D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA from the commercially available AmpF/STR Identifiler kit. Altogether 150 unrelated North Algerian individuals were sampled across 10 administrative regions or towns from the Bejaia Wilaya (administrative district). We found that all of the STR loci met Hardy-Weinberg equilibrium expectations, after Bonferroni correction and that the Berber-speaking population of Bejaia presented a high level of observed heterozygosity for the 15 STR system (>0.7). Genetic parameters of forensic interest such as combined power of discrimination (PD) and combined probability of exclusion (PE) showed values higher than 0.999, suggesting that this set of STRs can be used for forensic studies. Our results were also compared to those published for 42 other human populations analyzed with the same set. We found that the Bejaia sample clustered with several North African populations but that some geographically close populations, including the Berber-speaking Mozabite from Algeria were closer to Near-Eastern populations. While we were able to detect some genetic structure among samples, we found that it was not correlated to language (Berber-speaking versus Arab-speaking) or to geography (east versus west). In other words, no significant genetic differences were found between the Berber-speaking and the Arab-speaking populations of North Africa. The genetic closeness of European, North African and Near-Eastern populations suggest that North Africa should be integrated in models aiming at reconstructing the demographic history of Europe. Similarly, the genetic proximity with sub-Saharan Africa is a reminder of the links that connect all African regions.
- The Confounding Effect of Population Structure on Bayesian Skyline Plot Inferences of Demographic HistoryPublication . Heller, Rasmus; Chikhi, Lounes; Siegismund, Hans RedlefMany coalescent-based methods aiming to infer the demographic history of populations assume a single, isolated and panmictic population (i.e. a Wright-Fisher model). While this assumption may be reasonable under many conditions, several recent studies have shown that the results can be misleading when it is violated. Among the most widely applied demographic inference methods are Bayesian skyline plots (BSPs), which are used across a range of biological fields. Violations of the panmixia assumption are to be expected in many biological systems, but the consequences for skyline plot inferences have so far not been addressed and quantified. We simulated DNA sequence data under a variety of scenarios involving structured populations with variable levels of gene flow and analysed them using BSPs as implemented in the software package BEAST. Results revealed that BSPs can show false signals of population decline under biologically plausible combinations of population structure and sampling strategy, suggesting that the interpretation of several previous studies may need to be re-evaluated. We found that a balanced sampling strategy whereby samples are distributed on several populations provides the best scheme for inferring demographic change over a typical time scale. Analyses of data from a structured African buffalo population demonstrate how BSP results can be strengthened by simulations. We recommend that sample selection should be carefully considered in relation to population structure previous to BSP analyses, and that alternative scenarios should be evaluated when interpreting signals of population size change.
- The genetic legacy of Zoroastrianism in Iran and India: Insights into population structure, gene flow and selection.Publication . Lopez, Saioa; Thomas, Mark G; van Dorp, Lucy; Ansari-Pour, Naser; Stewart, Sarah; Jones, Abigail L; Jelinek, Erik; Chikhi, Lounes; Parfitt, Tudor; Bradman, Neil; Weale, Michael E; Hellenthal, GarrettZoroastrianism is one of the oldest extant religions in the world, originating in Persia (present-day Iran) during the second millennium BCE. Historical records indicate that migrants from Persia brought Zoroastrianism to India, but there is debate over the timing of these migrations. Here we present genome-wide autosomal, Y chromosome, and mitochondrial DNA data from Iranian and Indian Zoroastrians and neighboring modern-day Indian and Iranian populations and conduct a comprehensive genome-wide genetic analysis in these groups. Using powerful haplotype-based techniques, we find that Zoroastrians in Iran and India have increased genetic homogeneity relative to other sampled groups in their respective countries, consistent with their current practices of endogamy. Despite this, we infer that Indian Zoroastrians (Parsis) intermixed with local groups sometime after their arrival in India, dating this mixture to 690–1390 CE and providing strong evidence that Iranian Zoroastrian ancestry was maintained primarily through the male line. By making use of the rich information in DNA from ancient human remains, we also highlight admixture in the ancestors of Iranian Zoroastrians dated to 570 BCE–746 CE, older than admixture seen in any other sampled Iranian group, consistent with a long-standing isolation of Zoroastrians from outside groups. Finally, we report results, and challenges, from a genome-wide scan to identify genomic regions showing signatures of positive selection in present-day Zoroastrians that might correlate to the prevalence of particular diseases among these communities.