Browsing by Author "Dionísio, F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Muller's ratchet in random graphs and scale free networksPublication . Campos, P.R.A.; Combadão, J.; Dionísio, F.; Gordo, I.Muller's ratchet is an evolutionary process that has been implicated in the extinction of asexual species, the evolution of mitochondria, the degeneration of the Y chromosome, the evolution of sex and recombination and the evolution of microbes. Here we study the speed of Muller's ratchet in a population subdivided into many small subpopulations connected by migration, and distributed on a network. We compare the speed of the ratchet in two distinct types of topologies: scale free networks and random graphs. The difference between the topologies is noticeable when the average connectivity of the network and the migration rate is large. In this situation we observe that the ratchet clicks faster in scale free networks than in random graphs. So contrary to intuition, scale free networks are more prone to loss of genetic information than random graphs. On the other hand, we show that scale free networks are more robust to the random extinction than random graphs. Since these complex networks have been shown to describe well real-life systems, our results open a framework for studying the evolution of microbes and disease epidemics.
- Positive epistasis drives the acquisition of multidrug resistancePublication . Trindade, S.; Sousa, A.; Xavier, K.B.; Dionísio, F.; Ferreira, M.G.; Gordo, I.The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact--epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts