Browsing by Author "Faria, Vitor G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Host Adaptation Is Contingent upon the Infection Route Taken by PathogensPublication . Martins, Nelson E.; Faria, Vitor G.; Teixeira, Luis; Magalhães, Sara; Sucena, ÉlioEvolution of pathogen virulence is affected by the route of infection. Also, alternate infection routes trigger different physiological responses on hosts, impinging on host adaptation and on its interaction with pathogens. Yet, how route of infection may shape adaptation to pathogens has not received much attention at the experimental level. We addressed this question through the experimental evolution of an outbred Drosophila melanogaster population infected by two different routes (oral and systemic) with Pseudomonas entomophila. The two selection regimes led to markedly different evolutionary trajectories. Adaptation to infection through one route did not protect from infection through the alternate route, indicating distinct genetic bases. Finally, relatively to the control population, evolved flies were not more resistant to bacteria other than Pseudomonas and showed higher susceptibility to viral infections. These specificities and trade-offs may contribute to the maintenance of genetic variation for resistance in natural populations. Our data shows that the infection route affects host adaptation and thus, must be considered in studies of host-pathogen interaction.
- Testing cannibalism as a mechanism for horizontal transmission of Wolbachia in DrosophilaPublication . Faria, Vitor G.; Paulo, Tânia F.; Sucena, ÉlioWolbachia are intracellular symbionts of many species of animals, mostly arthropods. Vertical transmission of Wolbachia is exclusively maternal and this endobacterium promotes reproductive manipulations of its hosts, increasing the fitness of infected females. Moreover, Wolbachia provides its hosts with a wide range of adaptive features ranging from protection against viral infections to dietary niche occupancy. Therefore, Wolbachia can potentially contribute to the evolutionary processes of sexual selection and speciation. The horizontal transmission of Wolbachia is strongly suggested by the non-concordant phylogeny of this endosymbiont and that of its hosts. However, the ecological mechanism(s) responsible for endosymbiont transmission between different hosts is still largely unknown. In the present study, we look at ingestion as a possible natural form of Wolbachia horizontal transmission. To this aim, we tested cannibalism between infected and uninfected Drosophila hosts, under different conditions of nutrition and gut integrity. Although ingestion represents a general and incontestable portal of entry for microorganisms, we did not find infection by Wolbachia in the progeny of cannibal individuals fed on infected flies. Our study suggests that if ingestion is a vehicle for horizontal transmission of Wolbachia in nature, either it happens very rarely or it requires other factors or conditions to be effective. We discuss the likeliness of this mechanism with respect to the likelihood of each step necessary for horizontal transmission.