Browsing by Author "Gordo, I."
Now showing 1 - 10 of 28
Results Per Page
Sort Options
- Adaptation of asexual populations under Muller’s ratchetPublication . Bachtrog, D.; Gordo, I.We study the population genetics of adaptation in nonequilibrium haploid asexual populations. We find that the accumulation of deleterious mutations, due to the operation of Muller’s ratchet, can considerably reduce the rate of fixation of advantageous alleles. Such reduction can be approximated reasonably well by a reduction in the effective population size. In the absence of Muller’s ratchet, a beneficial mutation can only become fixed if it creates the best possible genotype; if Muller’s ratchet operates, however, mutations initially arising in a nonoptimal genotype can also become fixed in the population, since the loss of the least-loaded class implies that an initially nonoptimal background can become optimal. We show that, while the rate at which adaptive mutations become fixed is reduced, the rate of fixation of deleterious mutations due to the ratchet is not changed by the presence of beneficial mutations as long as the rate of their occurrence is low and the deleterious effects of mutations (sd) are higher than the beneficial effects (sa). When sa . sd, the advantage of a beneficial mutation can outweigh the deleterious effects of associated mutations. Under these conditions, a beneficial allele can drag to fixation deleterious mutations initially associated with it at a higher rate than in the absence of advantageous alleles. We propose analytical approximations for the rates of accumulation of deleterious and beneficial mutations. Furthermore, when allowing for the possible occurrence of interference between beneficial alleles, we find that the presence of deleterious mutations of either very weak or very strong effect can marginally increase the rate of accumulation of beneficial mutations over that observed in the absence of such deleterious mutations.
- Adaptive evolution in a spatially structured asexual populationPublication . Gordo, I.; Campos, P.R.A.We study the process of adaptation in a spatially structured asexual haploid population. The model assumes a local competition for replication, where each organism interacts only with its nearest neighbors. We observe that the substitution rate of beneficial mutations is smaller for a spatially structured population than that seen for populations without structure. The difference between structured and unstructured populations increases as the adaptive mutation rate increases. Furthermore, the substitution rate decreases as the number of neighbors for local competition is reduced. We have also studied the impact of structure on the distribution of adaptive mutations that fix during adaptation.
- An ABC Method for Estimating the Rate and Distribution of Effects of Beneficial MutationsPublication . Moura de Sousa, J. A.; Campos, P. R. A.; Gordo, I.Determining the distribution of adaptive mutations available to natural selection is a difficult task. These are rare events and most of them are lost by chance. Some theoretical works propose that the distribution of newly arising beneficial mutations should be close to exponential. Empirical data are scarce and do not always support an exponential distribution. Analysis of the dynamics of adaptation in asexual populations of microorganisms has revealed that these can be summarized by two effective parameters, the effective mutation rate, Ue, and the effective selection coefficient of a beneficial mutation, Se. Here, we show that these effective parameters will not always reflect the rate and mean effect of beneficial mutations, especially when the distribution of arising mutations has high variance, and the mutation rate is high. We propose a method to estimate the distribution of arising beneficial mutations, which is motivated by a common experimental setup. The method, which we call One Biallelic Marker Approximate Bayesian Computation, makes use of experimental data consisting of periodic measures of neutral marker frequencies and mean population fitness. Using simulations, we find that this method allows the discrimination of the shape of the distribution of arising mutations and that it provides reasonable estimates of their rates and mean effects in ranges of the parameter space that may be of biological relevance.
- Cognitive and Motivational Requirements for the Emergence of Cooperation in a Rat Social GamePublication . Viana, DS.; Gordo, I.; Sucena, E.; Moita, M.A.P.Background: Game theory and the Prisoner's Dilemma (PD) game in particular, which captures the paradox of cooperative interactions that lead to benefits but entail costs to the interacting individuals, have constituted a powerful tool in the study of the mechanisms of reciprocity. However, in non-human animals most tests of reciprocity in PD games have resulted in sustained defection strategies. As a consequence, it has been suggested that under such stringent conditions as the PD game humans alone have evolved the necessary cognitive abilities to engage in reciprocity, namely, numerical discrimination, memory and control of temporal discounting.
- Controlling excludability in the evolution of cooperationPublication . Dionisio, F.; Gordo, I.Background: A tragedy of the commons arises if individuals cannot protect their future use of a depletable resource, and individual fitness increases if individuals exploit the resource at rates beyond sustainability. Natural selection then forces the individuals to diminish, perhaps even to destroy, their resource. One way to protect future use is privatization - that is, locally excluding rivals from the resource. Another is to reduce rivalry among individuals by restricting exploitation rates.
- Did Germinal Centers evolve under differential effects of diversity vs affinity?Publication . Faro, J.; Combadão, J.; Gordo, I.The classical view on the process of mutation and affinity maturation that occurs in GCs assumes that their major role is to generate high affinity levels of serum Abs, as well as a dominant pool of high affinity memory B cells, through a very efficient selection process. Here we present a model that considers different types of structures where a mutation selection process occurs, with the aim at discussing the evolution of Germinal Center reactions. Based on the results of this model, we suggest that in addition to affinity maturation, the diversity generated during the GC reaction may have also been important in the evolution towards the presently observed highly organized structure of GC in higher vertebrates.
- Evolution of clonal populations approaching a fitness peakPublication . Gordo, I.; Campos, P. R. A.Populations facing novel environments are expected to evolve through the accumulation of adaptive substitutions. The dynamics of adaptation depend on the fitness landscape and possibly on the genetic background on which new mutations arise. Here, we model the dynamics of adaptive evolution at the phenotypic and genotypic levels, focusing on a Fisherian landscape characterized by a single peak. We find that Fisher's geometrical model of adaptation, extended to allow for small random environmental variations, is able to explain several features made recently in experimentally evolved populations. Consistent with data on populations evolving under controlled conditions, the model predicts that mean population fitness increases rapidly when populations face novel environments and then achieves a dynamic plateau, the rate of molecular evolution is remarkably constant over long periods of evolution, mutators are expected to invade and patterns of epistasis vary along the adaptive walk. Negative epistasis is expected in the initial steps of adaptation but not at later steps, a prediction that remains to be tested. Furthermore, populations are expected to exhibit high levels of phenotypic diversity at all times during their evolution. This implies that populations are possibly able to adapt rapidly to novel abiotic environments.
- Genetic diversity in the SIR model of pathogen evolutionPublication . Gordo, I.; Gomes, M.G.M.; Reis, D.G.; Campos, P.R.A.We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR). We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts), where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R0(1+s)) is higher than the fitness of the resident strain (R0). We show that this invasion probability is given by the relative increment in R0 of the new pathogen (s). By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A.
- Genetic recombination and molecular evolutionPublication . Charlesworth, B.; Betancourt, A.J.; Kaiser, V.B.; Gordo, I.Reduced rates of genetic recombination are often associated with reduced genetic variability and levels of adaptation. Several different evolutionary processes, collectively known as Hill–Robertson (HR) effects, have been proposed as causes of these correlates of recombination. Here, we use DNA sequence polymorphism and divergence data from the noncrossing over dot chromosome of Drosophila to discriminate between two of the major forms of HR effects: selective sweeps and background selection. This chromosome shows reduced levels of silent variability and reduced effectiveness of selection. We show that neither model fits the data on variability. We propose that, in large genomic regions with restricted recombination, HR effects among nonsynonymous mutations undermine the effective strength of selection, so that their background selection effects are weakened. This modified model fits the data on variability and also explains why variability in very large nonrecombining genomes is not completely wiped out. We also show that HR effects of this type can produce an individual selection advantage to recombination, as well as greatly reduce the mean fitness of nonrecombining genomes and genomic regions
- Increased Survival of Antibiotic-Resistant Escherichia coli inside MacrophagesPublication . Miskinyte, M.; Gordo, I.Mutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in the rpoB, rpsL, and gyrA genes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits-growth rate and survival ability-of 12 Escherichia coli K-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, all E. coli streptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival of E. coli in the context of an infection.
- «
- 1 (current)
- 2
- 3
- »