Browsing by Author "Mainen, ZF"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- A defined network of fast-spiking interneurons in orbitofrontal cortex: responses to behavioral contingencies and ketamine administrationPublication . Quirk, MC; Sosulski, DL; Feierstein, CE; Uchida, N; Mainen, ZFOrbitofrontal cortex (OFC) is a region of prefrontal cortex implicated in the motivational control of behavior and in related abnormalities seen in psychosis and depression. It has been hypothesized that a critical mechanism in these disorders is the dysfunction of GABAergic interneurons that normally regulate prefrontal information processing. Here, we studied a subclass of interneurons isolated in rat OFC using extracellular waveform and spike train analysis. During performance of a goal-directed behavioral task, the firing of this class of putative fast-spiking (FS) interneurons showed robust temporal correlations indicative of a functionally coherent network. FS cell activity also co-varied with behavioral response latency, a key indicator of motivational state. Systemic administration of ketamine, a drug that can mimic psychosis, preferentially inhibited this cell class. Together, these results support the idea that OFC-FS interneurons form a critical link in the regulation of motivation by prefrontal circuits during normal and abnormal brain and behavioral states.
- Neural representation of behavioral outcomes in the orbitofrontal cortexPublication . Mainen, ZF; Kepecs, AThe orbitofrontal cortex (OFC) is important in processing rewards and other behavioral outcomes. Here, we review from a computational perspective recent progress in understanding this complex function. OFC neurons appear to represent abstract outcome values, which may facilitate the comparison of options, as well as concrete outcome attributes, such as flavor or location, which may enable predictive cues to access current outcome values in the face of dynamic modulation by internal state, context and learning. OFC can use reinforcement learning to generate outcome predictions; it can also generate outcome predictions using other mechanisms, including the evaluation of decision confidence or uncertainty. OFC neurons encode not only the mean expected outcome but also the variance, consistent with the idea that OFC uses a probabilistic population code to represent outcomes. We suggest that further attention to the nature of its representations and algorithms will be critical to further elucidating OFC function.
- Towards an image of a memory tracePublication . Vicente, MI; Mainen, ZFLearning and memory lead to functional and structural changes in the brain, ultimately providing a basis for adaptive behavior. The honeybee is an elegant model for the study of learning and memory formation as it permits both the visualization of neural activity related to the events occurring in olfactory learning and the behavioral assessment of olfactory learning (Galizia and Menzel, 2000 ). The formation of odor memories in the honeybee is thought to involve the two primary processing centers of the olfactory system, the antennal lobe (AL) and the mushroom body (MB). The intrinsic neurons of the MB – the Kenyon cells (KCs), located within the lip region of the MB calyx – are the site of convergence of the neural pathways that transmit odor information from the projection neurons (PNs) of the AL and reward information from the VUMmx1 neuron (Hammer, 1997 ). In recent years, imaging studies performed in the honeybee AL and MB lip have indicated that pairing odor and reward induces changes in neural activity (Faber and Menzel, 2001 ; Faber et al., 1999 ), reinforcing the anatomical suggestion that KCs are likely to undergo associative plasticity during learning.
- Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward eventsPublication . Ranade, SP; Mainen, ZFSerotonin (5-hydroxytryptamine [5-HT]) is known to influence a wide range of behaviors and physiological processes, but relatively little is known about events that trigger 5-HT release. To address this issue, we recorded from neurons in the dorsal raphe nucleus (DRN) in rats performing an odor-guided spatial decision task. A large fraction of DRN neurons showed transient firing time locked to behavioral events on timescales as little as 20 ms. DRN transients were sometimes correlated with reward parameters, but also encoded specific sensorimotor events, including stimulus identity and response direction. These behavioral correlates were diverse but showed no apparent relationship with waveform or other firing properties indicative of neurochemical identity. These results suggest that the 5-HT system does not encode a unitary signal and that it will broadcast specific information to the forebrain with speed and precision sufficient not only to modulate but also to dynamically sculpt ongoing information processing.