Browsing by Author "Mesquita, Marta"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesisPublication . Lopes, Carla A.M.; Mesquita, Marta; Cunha, Ana Isabel; Cardoso, Joana; Carapeta, Sara; Laranjeira, Cátia; Pinto, António E.; Pereira-Leal, José B.; Dias-Pereira, António; Bettencourt-Dias, Mónica; Chaves, PaulaCentrosome abnormalities are a typical hallmark of human cancers. However, the origin and dynamics of such abnormalities in human cancer are not known. In this study, we examined centrosomes in Barrett's esophagus tumorigenesis, a well-characterized multistep pathway of progression, from the premalignant condition to the metastatic disease. This human cancer model allows the study of sequential steps of progression within the same patient and has representative cell lines from all stages of disease. Remarkably, centrosome amplification was detected as early as the premalignant condition and was significantly expanded in dysplasia. It was then present throughout malignant transformation both in adenocarcinoma and metastasis. The early expansion of centrosome amplification correlated with and was dependent on loss of function of the tumor suppressor p53 both through loss of wild-type expression and hotspot mutations. Our work shows that centrosome amplification in human tumorigenesis can occur before transformation, being repressed by p53. These findings suggest centrosome amplification in humans can contribute to tumor initiation and progression.
- CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett’s Esophagus Malignant ProgressionPublication . Cardoso, Joana; Mesquita, Marta; Dias Pereira, António; Bettencourt-Dias, Mónica; Chaves, Paula; Pereira-Leal, José B.Barrett's esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett's malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett's progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett's samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett's esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett's esophagus neoplastic progression.
- Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregationPublication . Marteil, Gaëlle; Guerrero, Adan; Vieira, André F; de Almeida, Bernardo P; Machado, Pedro; Mendonça, Susana; Mesquita, Marta; Villarreal, Beth; Fonseca, Irina; Francia, Maria E; Dores, Katharina; Martins, Nuno P; Jana, Swadhin C; Tranfield, Erin M; Barbosa-Morais, Nuno L; Paredes, Joana; Pellman, David; Godinho, Susana A; Bettencourt-Dias, MónicaCentrosomes are the major microtubule organising centres of animal cells. Deregulation in their number occurs in cancer and was shown to trigger tumorigenesis in mice. However, the incidence, consequence and origins of this abnormality are poorly understood. Here, we screened the NCI-60 panel of human cancer cell lines to systematically analyse centriole number and structure. Our screen shows that centriole amplification is widespread in cancer cell lines and highly prevalent in aggressive breast carcinomas. Moreover, we identify another recurrent feature of cancer cells: centriole size deregulation. Further experiments demonstrate that severe centriole over-elongation can promote amplification through both centriole fragmentation and ectopic procentriole formation. Furthermore, we show that overly long centrioles form over-active centrosomes that nucleate more microtubules, a known cause of invasiveness, and perturb chromosome segregation. Our screen establishes centriole amplification and size deregulation as recurrent features of cancer cells and identifies novel causes and consequences of those abnormalities.