Browsing by Author "Moita, Luis F."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Celastrol: A Spectrum of Treatment Opportunities in Chronic DiseasesPublication . Cascão, Rita; Fonseca, João E.; Moita, Luis F.The identification of new bioactive compounds derived from medicinal plants with significant therapeutic properties has attracted considerable interest in recent years. Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. Clinical trials performed so far using its root extracts have shown impressive therapeutic properties but also revealed substantial gastrointestinal side effects. The most promising bioactive compound obtained from TW is celastrol. During the last decade, an increasing number of studies were published highlighting the medicinal usefulness of celastrol in diverse clinical areas. Here we systematically review the mechanism of action and the therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage issues that still limit its further clinical application and usefulness.
- Decrease of CD68 Synovial Macrophages in Celastrol Treated Arthritic RatsPublication . Cascão, Rita; Vidal, Bruno; Lopes, Inês P.; Paisana, Eunice; Rino, José; Moita, Luis F.; Fonseca, João E.Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by cellular infiltration into the joints, hyperproliferation of synovial cells and bone damage. Available treatments for RA only induce remission in around 30% of the patients, have important adverse effects and its use is limited by their high cost. Therefore, compounds that can control arthritis, with an acceptable safety profile and low production costs are still an unmet need. We have shown, in vitro, that celastrol inhibits both IL-1β and TNF, which play an important role in RA, and, in vivo, that celastrol has significant anti-inflammatory properties. Our main goal in this work was to test the effect of celastrol in the number of sublining CD68 macrophages (a biomarker of therapeutic response for novel RA treatments) and on the overall synovial tissue cellularity and joint structure in the adjuvant-induced rat model of arthritis (AIA).
- Disease tolerance and immunity in host protection against infectionPublication . Soares, Miguel P.; Teixeira, Luis; Moita, Luis F.The immune system probably evolved to limit the negative effects exerted by pathogens on host homeostasis. This defence strategy relies on the concerted action of innate and adaptive components of the immune system, which sense and target pathogens for containment, destruction or expulsion. Resistance to infection refers to these immune functions, which reduce the pathogen load of an infected host as the means to preserve homeostasis. Immune-driven resistance to infection is coupled to an additional, and arguably as important, defence strategy that limits the extent of dysfunction imposed on host parenchymal tissues during infection, without exerting a direct negative effect on pathogens. This defence strategy, known as disease tolerance, relies on tissue damage control mechanisms that prevent the deleterious effects of pathogens and that uncouples immune-driven resistance mechanisms from immunopathology and disease. In this Review, we provide a unifying view of resistance and disease tolerance in the framework of immunity to infection.
- Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT CellsPublication . Harriff, Melanie J.; Karamooz, Elham; Burr, Ansen; Grant, Wilmon F.; Canfield, Elizabeth T.; Sorensen, Michelle L.; Moita, Luis F.; Lewinsohn, David M.Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.