Browsing by Author "Pereira Leal, J.B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Multiple domain insertions and losses in the evolution of the Rab prenylation complexPublication . Rasteiro, R.; Pereira Leal, J.B.BACKGROUND: Rab proteins are regulators of vesicular trafficking, requiring a lipid modification for proper function, prenylation of C-terminal cysteines. This is catalysed by a complex of a catalytic heterodimer (Rab Geranylgeranyl Transferase - RabGGTase) and an accessory protein (Rab Escort Protein. REP). Components of this complex display domain insertions relative to paralogous proteins. The function of these inserted domains is unclear. RESULTS: We profiled the domain architecture of the components of the Rab prenylation complex in evolution. We identified the orthologues of the components of the Rab prenylation machinery in 43 organisms, representing the crown eukaryotic groups. We characterize in detail the domain structure of all these components and the phylogenetic relationships between the individual domains. CONCLUSION: We found different domain insertions in different taxa, in alpha-subunits of RGGTase and REP. Our results suggest that there were multiple insertions, expansions and contractions in the evolution of this prenylation complex
- The evolution of protein complexes by duplication of homomeric interactionsPublication . Pereira Leal, J.B.; Levy, E.D.; Kamp, C.; Teichmann, S.A.BACKGROUND: Cellular functions are accomplished by the concerted actions of functional modules. The mechanisms driving the emergence and evolution of these modules are still unclear. Here we investigate the evolutionary origins of protein complexes, modules in physical protein-protein interaction networks. RESULTS: We studied protein complexes in Saccharomyces cerevisiae, complexes of known three-dimensional structure in the Protein Data Bank and clusters of pairwise protein interactions in the networks of several organisms. We found that duplication of homomeric interactions, a large class of protein interactions, frequently results in the formation of complexes of paralogous proteins. This route is a common mechanism for the evolution of complexes and clusters of protein interactions. Our conclusions are further confirmed by theoretical modelling of network evolution. We propose reasons for why this is favourable in terms of structure and function of protein complexes. CONCLUSION: Our study provides the first insight into the evolution of functional modularity in protein-protein interaction networks, and the origins of a large class of protein complexes.