Browsing by Author "Ventura, M. Rita"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2Publication . Marques, João C.; Oh, Il Kyu; Ly, Daniel C.; Lamosa, Pedro; Ventura, M. Rita; Miller, Stephen T.; Xavier, Karina BivarThe quorum sensing signal autoinducer-2 (AI-2) regulates important bacterial behaviors, including biofilm formation and the production of virulence factors. Some bacteria, such as Escherichia coli, can quench the AI-2 signal produced by a variety of species present in the environment, and thus can influence AI-2-dependent bacterial behaviors. This process involves uptake of AI-2 via the Lsr transporter, followed by phosphorylation and consequent intracellular sequestration. Here we determine the metabolic fate of intracellular AI-2 by characterizing LsrF, the terminal protein in the Lsr AI-2 processing pathway. We identify the substrates of LsrF as 3-hydroxy-2,4-pentadione-5-phosphate (P-HPD, an isomer of AI-2-phosphate) and coenzyme A, determine the crystal structure of an LsrF catalytic mutant bound to P-HPD, and identify the reaction products. We show that LsrF catalyzes the transfer of an acetyl group from P-HPD to coenzyme A yielding dihydroxyacetone phosphate and acetyl-CoA, two key central metabolites. We further propose that LsrF, despite strong structural homology to aldolases, acts as a thiolase, an activity previously undescribed for this family of enzymes. With this work, we have fully characterized the biological pathway for AI-2 processing in E. coli, a pathway that can be used to quench AI-2 and control quorum-sensing-regulated bacterial behaviors.
- Synthesis and biological activity of a potent optically pure autoinducer-2 quorum sensing agonistPublication . Ascenso, Osvaldo S.; Torcato, Inês M.; Miguel, Ana Sofia; Marques, João C.; Xavier, Karina B.; Ventura, M. Rita; Maycock, Christopher D.Quorum sensing (QS) regulates population-dependent bacterial behaviours, such as toxin production, biofilm formation and virulence. Autoinducer-2 (AI-2) is to date the only signalling molecule known to foster inter-species bacterial communication across distantly related bacterial species. In this work, the synthesis of pure enantiomers of C4-propoxy-HPD and C4-ethoxy-HPD, known AI-2 analogues, has been developed. The optimised synthesis is efficient, reproducible and short. The (4S) enantiomer of C4-propoxy-HPD was the most active compound being approximately twice as efficient as (4S)-DPD and ten-times more potent than the (4R) enantiomer. Additionally, the specificity of this analogue to bacteria with LuxP receptors makes it a good candidate for clinical applications, because it is not susceptible to scavenging by LsrB-containing bacteria that degrade the natural AI-2. All in all, this study provides a new brief and effective synthesis of isomerically pure analogues for QS modulation that include the most active AI-2 agonist described so far.