Browsing by Author "White, L. J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectivesPublication . Gomes, M. G. M.; White, L. J.; Medley, G. F.The SIR (susceptible-infectious-resistant) and SIS (susceptible-infectious-susceptible) frameworks for infectious disease have been extensively studied and successfully applied. They implicitly assume the upper and lower limits of the range of possibilities for host immune response. However, the majority of infections do not fall into either of these extreme categories. We combine two general avenues that straddle this range: temporary immune protection (immunity wanes over time since infection), and partial immune protection (immunity is not fully protective but reduces the risk of reinfection). We present a systematic analysis of the dynamics and equilibrium properties of these models in comparison to SIR and SIS, and analyse the outcome of vaccination programmes. We describe how the waning of immunity shortens inter-epidemic periods, and poses major difficulties to disease eradication. We identify a "reinfection threshold" in transmission when partial immunity is included. Below the reinfection threshold primary infection dominates, levels of infection are low, and vaccination is highly effective (approximately an SIR model). Above the reinfection threshold reinfection dominates, levels of infection are high, and vaccination fails to protect (approximately an SIS situation). This association between high prevalence of infection and vaccine failure emphasizes the problems of controlling recurrent infections in high-burden regions. However, vaccines that induce a better protection than natural infection have the potential to increase the reinfection threshold, and therefore constitute interventions with a surprisingly high capacity to reduce infection where reduction is most needed
- Prospects for malaria eradication in sub-Saharan AfricaPublication . Aguas, R.; White, L. J.; Snow R.W.; Gomes M.G.M.BACKGROUND: A characteristic of Plasmodium falciparum infections is the gradual acquisition of clinical immunity resulting from repeated exposures to the parasite. While the molecular basis of protection against clinical malaria remains unresolved, its effects on epidemiological patterns are well recognized. Accumulating epidemiological data constitute a valuable resource that must be intensively explored and interpreted as to effectively inform control planning. METHODOLOGY/PRINCIPAL FINDING: Here we apply a mathematical model to clinical data from eight endemic regions in sub-Saharan Africa. The model provides a quantitative framework within which differences in age distribution of clinical disease are assessed in terms of the parameters underlying transmission. The shorter infectious periods estimated for clinical infections induce a regime of bistability of endemic and malaria-free states in regions of mesoendemic transmission. The two epidemiological states are separated by a threshold that provides a convenient measure for intervention design. Scenarios of eradication and resurgence are simulated. CONCLUSIONS/SIGNIFICANCE: In regions that support mesoendemic transmission, intervention success depends critically on reducing prevalence below a threshold which separates endemic and malaria-free regimes
- The reinfection thresholdPublication . Gomes, M. G. M.; White, L. J.; Medley, G. F.Thresholds in transmission are responsible for critical changes in infectious disease epidemiology. The epidemic threshold indicates whether infection invades a totally susceptible population. The reinfection threshold indicates whether self-sustained transmission occurs in a population that has developed a degree of partial immunity to the pathogen (by previous infection or vaccination). In models that combine susceptible and partially immune individuals, the reinfection threshold is technically not a bifurcation of equilibria as correctly pointed out by Breban and Blower. However, we show that a branch of equilibria to a reinfection submodel bifurcates from the disease-free equilibrium as transmission crosses this threshold. Consequently, the full model indicates that levels of infection increase by two orders of magnitude and the effect of mass vaccination becomes negligible as transmission increases across the reinfection threshold. (c) 2005 Elsevier Ltd. All rights reserved