IBB- Artigos
Permanent URI for this collection
Browse
Browsing IBB- Artigos by Subject "androgens"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Androgen modulation of social decision-making mechanisms in the brain: an integrative and embodied perspectivePublication . Oliveira, Gonçalo A.; Oliveira, Rui F.Apart from their role in reproduction androgens also respond to social challenges and this response has been seen as a way to regulate the expression of behavior according to the perceived social environment (Challenge hypothesis, Wingfield et al., 1990). This hypothesis implies that social decision-making mechanisms localized in the central nervous system (CNS) are open to the influence of peripheral hormones that ultimately are under the control of the CNS through the hypothalamic-pituitary-gonadal axis. Therefore, two puzzling questions emerge at two different levels of biological analysis: (1) Why does the brain, which perceives the social environment and regulates androgen production in the gonad, need feedback information from the gonad to adjust its social decision-making processes? (2) How does the brain regulate gonadal androgen responses to social challenges and how do these feedback into the brain? In this paper, we will address these two questions using the integrative approach proposed by Niko Tinbergen, who proposed that a full understanding of behavior requires its analysis at both proximate (physiology, ontogeny) and ultimate (ecology, evolution) levels.
- Audience Effects in Territorial Defense of Male Cichlid Fish Are Associated with Differential Patterns of Activation of the Brain Social Decision-Making NetworkPublication . Roleira, António; Oliveira, Gonçalo A.; Lopes, João S.; Oliveira, Rui F.Animals communicate by exchanging signals frequently in the proximity of other conspecifics that may detect and intercept signals not directed to them. There is evidence that the presence of these bystanders modulates the signaling behavior of interacting individuals, a phenomenon that has been named audience effect. Research on the audience effect has predominantly focused on its function rather than on its proximate mechanisms. Here, we have investigated the physiological and neuromolecular correlates of the audience effect in a cichlid fish (Mozambique tilapia, Oreochromis mossambicus). A male was exposed to a territorial intrusion in the presence or absence of a female audience. Results showed that the presence of the female audience increased territorial defense, but elicited a lower androgen and cortisol response to the territorial intrusion. Furthermore, analysis of the expression of immediate early genes, used as markers of neuronal activity, in brain areas belonging to the social decision-making network (SDMN) revealed different patterns of network activity and connectivity across the different social contexts (i.e., audience × intrusion). Overall, these results suggest that socially driven plasticity in the expression of territorial behavior is accommodated in the central nervous system by rapid changes in functional connectivity between nodes of relevant networks (SDMN) rather than by localized changes of activity in specific brain nuclei.
- Dear Enemies Elicit Lower Androgen Responses to Territorial Challenges than Unfamiliar Intruders in a Cichlid FishPublication . Aires, Rui F.; Oliveira, Gonçalo A.; Oliveira, Tânia F.; Ros, Albert F. H.; Oliveira, Rui F.In many territorial species androgen hormones are known to increase in response to territorial intrusions as a way to adjust the expression of androgen-dependent behaviour to social challenges. The dear enemy effect has also been described in territorial species and posits that resident individuals show a more aggressive response to intrusions by strangers than by other territorial neighbours. Therefore, we hypothesized that the dear enemy effect may also modulate the androgen response to a territorial intrusion. Here we tested this hypothesis in male cichlid fish (Mozambique tilapia, Oreochromis mossambicus) using a paradigm of four repeated territorial intrusions, either by the same neighbour or by four different unfamiliar intruders. Neighbour intruders elicited lower aggression and a weaker androgen response than strangers on the first intrusion of the experiment. With repeated intrusions, the agonistic behaviour of the resident males against familiar intruders was similar to that displayed towards strangers. By the fourth intrusion the androgen response was significantly reduced and there was no longer a difference between the responses to the two types of intruders. These results suggest that the dear enemy effect modulates the androgen response to territorial intrusions and that repeated intrusions lead to a habituation of the androgen response.
- Testosterone response to competition in males is unrelated to opponent familiarity or threat appraisalPublication . Oliveira, Gonçalo A.; Uceda, Sara; Oliveira, Tânia F.; Fernandes, Alexandre C.; Garcia-Marques, Teresa; Oliveira, Rui F.It has been proposed in the literature that the testosterone (T) response to competition in humans may be modulated by cognitive variables. In a previous experiment with a female sample we have reported that opponent familiarity and threat appraisal moderated the T response to competition in women. With this experiment we aim to investigate if these variables have the same impact on males T response to competition, extending the previous findings in our lab. Forty male participants (20 dyads) were recruited to engage in a same sex, face to face competition using the Number Tracking Test as a competitive task. Levels of T, cortisol (C) and dehydroepiandrosterone (DHEA) were measured before and 20 min after the competition. Results show that losers report higher levels of threat than winners and increased their T levels after the competition, however this T change was not predicted by opponent familiarity or threat appraisal. No variation was detected for C and DHEA levels. These findings suggest that there could be sex differences for the moderators/mediators of the T response to competition in humans.