CBD- Artigos
Permanent URI for this collection
Browse
Browsing CBD- Artigos by Subject "Arabidopsis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Plasma membrane H+-ATPases sustain pollen tube growth and fertilizationPublication . Hoffmann, Robert D.; Portes, Maria Teresa; Olsen, Lene Irene; Damineli, Daniel Santa Cruz; Hayashi, Maki; Nunes, Custódio O.; Pedersen, Jesper T.; Lima, Pedro T.; Campos, Cláudia; Feijó, José A.; Palmgren, MichaelPollen tubes are highly polarized tip-growing cells that depend on cytosolic pH gradients for signaling and growth. Autoinhibited plasma membrane proton (H+) ATPases (AHAs) have been proposed to energize pollen tube growth and underlie cell polarity, however, mechanistic evidence for this is lacking. Here we report that the combined loss of AHA6, AHA8, and AHA9 in Arabidopsis thaliana delays pollen germination and causes pollen tube growth defects, leading to drastically reduced fertility. Pollen tubes of aha mutants had reduced extracellular proton (H+) and anion fluxes, reduced cytosolic pH, reduced tip-to-shank proton gradients, and defects in actin organization. Furthermore, mutant pollen tubes had less negative membrane potentials, substantiating a mechanistic role for AHAs in pollen tube growth through plasma membrane hyperpolarization. Our findings define AHAs as energy transducers that sustain the ionic circuit defining the spatial and temporal profiles of cytosolic pH, thereby controlling downstream pH-dependent mechanisms essential for pollen tube elongation, and thus plant fertility.
- Reprogramming of DNA Methylation in Pollen Guides Epigenetic Inheritance via Small RNAPublication . Calarco, Joseph P.; Borges, Filipe; Donoghue, Mark T.A.; Van Ex, Frédéric; Jullien, Pauline E.; Lopes, Telma; Gardner, Rui; Berger, Frédéric; Feijó, José A.; Becker, Jörg D.; Martienssen, Robert A.Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
- Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signaturePublication . Becker, Jörg D; Takeda, Seiji; Borges, Filipe; Dolan, Liam; Feijó, José ACurrent views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants.