Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- SnRK1 and trehalose 6-phosphate – two ancient pathways converge to regulate plant metabolism and growthPublication . Baena-González, Elena; Lunn, JohnSUCROSE-NON-FERMENTING1-RELATED KINASE1 (SnRK1) belongs to a family of protein kinases that originated in the earliest eukaryotes and plays a central role in energy and metabolic homeostasis. Trehalose 6-phosphate (Tre6P) is the intermediate of trehalose biosynthesis, and has even more ancient roots, being found in all three domains of life – Archaea, Bacteria and Eukarya. In plants, the function of SnRK1 has diverged from its orthologues in fungi and animals, evolving new roles in signalling of nutrient status and abiotic stress. Tre6P has also acquired a novel function in plants as a signal and homeostatic regulator of sucrose, the dominant sugar in plant metabolism. These two ancient pathways have converged in a unique way in plants, enabling them to coordinate their metabolism, growth and development with their environment, which is essential for their autotrophic and sessile lifestyle
- Shaping plant development through the SnRK1–TOR metabolic regulatorsPublication . Baena-González, Elena; Hanson, JohannesSnRK1 (Snf1-related protein kinase 1) and TOR (target ofrapamycin) are evolutionarily conserved protein kinases thatlie at the heart of energy sensing, playing central andantagonistic roles in the regulation of metabolism and geneexpression. Increasing evidence links these metabolicregulators to numerous aspects of plant development, fromgermination to flowering and senescence. This prompts thehypothesis that SnRK1 and TOR modify developmentalprograms according to the metabolic status to adjust plantgrowth to a specific environment. The aim of this review is toprovide support to this hypothesis and to incentivize furtherstudies on this topic by summarizing the work that establishesa genetic connection between SnRK1–TOR and plantdevelopment.