Loading...
Research Project
Untitled
Funder
Authors
Publications
PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space
Publication . Lopes, Carla A.M.; Jana, Swadhin Chandra; Cunha-Ferreira, Inês; Zitouni, Sihem; Bento, Inês; Duarte, Paulo; Gilberto, Samuel; Freixo, Francisco; Guerrero, Adán; Francia, Maria; Lince-Faria, Mariana; Carneiro, Jorge; Bettencourt-Dias, Mónica
Centrioles are essential for cilia and centrosome assembly. In centriole-containing cells, centrioles always form juxtaposed to pre-existing ones, motivating a century-old debate on centriole biogenesis control. Here, we show that trans-autoactivation of Polo-like kinase 4 (PLK4), the trigger of centriole biogenesis, is a critical event in the spatial control of that process. We demonstrate that centrioles promote PLK4 activation through its recruitment and local accumulation. Though centriole removal reduces the proportion of active PLK4, this is rescued by concentrating PLK4 to the peroxisome lumen. Moreover, while mild overexpression of PLK4 only triggers centriole amplification at the existing centriole, higher PLK4 levels trigger both centriolar and cytoplasmatic (de novo) biogenesis. Hence, centrioles promote their assembly locally and disfavor de novo synthesis. Similar mechanisms enforcing the local concentration and/or activity of other centriole components are likely to contribute to the spatial control of centriole biogenesis under physiological conditions.
CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis
Publication . Zitouni, Sihem; Francia, Maria E.; Leal, Filipe; Montenegro Gouveia, Susana; Nabais, Catarina; Duarte, Paulo; Gilberto, Samuel; Brito, Daniela; Moyer, Tyler; Kandels-Lewis, Steffi; Ohta, Midori; Kitagawa, Daiju; Holland, Andrew J.; Karsenti, Eric; Lorca, Thierry; Lince-Faria, Mariana; Bettencourt-Dias, Mónica
Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
EXPL/BIM-ONC/0830/2013