Loading...
Research Project
Molecular control of actin dynamics and change in cell shape in the morphogenetic furrow during Drosophila eye development.
Funder
Authors
Publications
dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis
Publication . Brás-Pereira, Catarina; Potier, Delphine; Jacobs, Jelle; Aerts, Stein; Casares, Fernando; Janody, Florence
Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis.
The retinal determination gene dachshund restricts cell proliferation by limiting the activity of the Homothorax-Yorkie complex
Publication . Bras-Pereira, C.; Casares, F.; Janody, F.
The Drosophila transcriptional co-activator protein Yorkie and its vertebrate orthologs YAP and TAZ are potent oncogenes, whose activity is normally kept in check by the upstream Hippo kinase module. Upon its translocation into the nucleus, Yorkie forms complexes with several tissue-specific DNA-binding partners, which help to define the tissue-specific target genes of Yorkie. In the progenitor cells of the eye imaginal disc, the DNA-binding transcription factor Homothorax is required for Yorkie-promoted proliferation and survival through regulation of the bantam microRNA (miRNA). The transit from proliferating progenitors to cell cycle quiescent precursors is associated with the progressive loss of Homothorax and gain of Dachshund, a nuclear protein related to the Sno/Ski family of co-repressors. We have identified Dachshund as an inhibitor of Homothorax-Yorkie-mediated cell proliferation. Loss of dachshund induces Yorkie-dependent tissue overgrowth. Conversely, overexpressing dachshund inhibits tissue growth, prevents Yorkie or Homothorax-mediated cell proliferation of disc epithelia and restricts the transcriptional activity of the Yorkie-Homothorax complex on the bantam enhancer in Drosophila cells. In addition, Dachshund collaborates with the Decapentaplegic receptor Thickveins to repress Homothorax and Cyclin B expression in quiescent precursors. The antagonistic roles of Homothorax and Dachshund in Yorkie activity, together with their mutual repression, ensure that progenitor and precursor cells are under distinct proliferation regimes. Based on the crucial role of the human dachshund homolog DACH1 in tumorigenesis, our work suggests that DACH1 might prevent cellular transformation by limiting the oncogenic activity of YAP and/or TAZ.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/BIA-BCM/71674/2006