Loading...
Research Project
Untitled
Funder
Authors
Publications
Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis
Publication . Johnson, Nicholas; Březinová, Jana; Stephens, Elaine; Burbridge, Emma; Freeman, Matthew; Adrain, Colin; Strisovsky, Kvido
Rhomboids are intramembrane serine proteases conserved in all kingdoms of life. They regulate epidermal growth factor receptor signalling in Drosophila by releasing signalling ligands from their transmembrane tethers. Their functions in mammals are poorly understood, in part because of the lack of endogenous substrates identified thus far. We used a quantitative proteomics approach to investigate the substrate repertoire of rhomboid protease RHBDL2 in human cells. We reveal a range of novel substrates that are specifically cleaved by RHBDL2, including the interleukin-6 receptor (IL6R), cell surface protease inhibitor Spint-1, the collagen receptor tyrosine kinase DDR1, N-Cadherin, CLCP1/DCBLD2, KIRREL, BCAM and others. We further demonstrate that these substrates can be shed by endogenously expressed RHBDL2 and that a subset of them is resistant to shedding by cell surface metalloproteases. The expression profiles and identity of the substrates implicate RHBDL2 in physiological or pathological processes affecting epithelial homeostasis.
Phosphorylation of iRhom2 Controls Stimulated Proteolytic Shedding by the Metalloprotease ADAM17/TACE
Publication . Cavadas, Miguel; Oikonomidi, Ioanna; Gaspar, Catarina J.; Burbridge, Emma; Badenes, Marina; Félix, Inês; Bolado, Alfonso; Hu, Tianyi; Bileck, Andrea; Gerner, Christopher; Domingos, Pedro M.; von Kriegsheim, Alex; Adrain, Colin
Cell surface metalloproteases coordinate signaling during development, tissue homeostasis, and disease. TACE (TNF-α-converting enzyme), is responsible for cleavage ("shedding") of membrane-tethered signaling molecules, including the cytokine TNF, and activating ligands of the EGFR. The trafficking of TACE within the secretory pathway requires its binding to iRhom2, which mediates the exit of TACE from the endoplasmic reticulum. An important, but mechanistically unclear, feature of TACE biology is its ability to be stimulated rapidly on the cell surface by numerous inflammatory and growth-promoting agents. Here, we report a role for iRhom2 in TACE stimulation on the cell surface. TACE shedding stimuli trigger MAP kinase-dependent phosphorylation of iRhom2 N-terminal cytoplasmic tail. This recruits 14-3-3 proteins, enforcing the dissociation of TACE from complexes with iRhom2, promoting the cleavage of TACE substrates. Our data reveal that iRhom2 controls multiple aspects of TACE biology, including stimulated shedding on the cell surface.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/BEX-BCM/3015/2014