Loading...
Research Project
Untitled
Funder
Authors
Publications
Host adaptation to viruses relies on few genes with different cross-resistance properties
Publication . Martins, N. E.; Faria, V. G.; Nolte, V.; Schlotterer, C.; Teixeira, L.; Sucena, E.; Magalhaes, S.
Host adaptation to one parasite may affect its response to others. However, the genetics of these direct and correlated responses remains poorly studied. The overlap between these responses is instrumental for the understanding of host evolution in multiparasite environments. We determined the genetic and phenotypic changes underlying adaptation of Drosophila melanogaster to Drosophila C virus (DCV). Within 20 generations, flies selected with DCV showed increased survival after DCV infection, but also after cricket paralysis virus (CrPV) and flock house virus (FHV) infection. Whole-genome sequencing identified two regions of significant differentiation among treatments, from which candidate genes were functionally tested with RNAi. Three genes were validated--pastrel, a known DCV-response gene, and two other loci, Ubc-E2H and CG8492. Knockdown of Ubc-E2H and pastrel also led to increased sensitivity to CrPV, whereas knockdown of CG8492 increased susceptibility to FHV infection. Therefore, Drosophila adaptation to DCV relies on few major genes, each with different cross-resistance properties, conferring host resistance to several parasites.
The Toll-dorsal pathway is required for resistance to viral oral infection in Drosophila
Publication . Ferreira, Álvaro Gil; Naylor, Huw; Esteves, Sara Santana; Pais, Inês Silva; Martins, Nelson Eduardo; Teixeira, Luis
Pathogen entry route can have a strong impact on the result of microbial infections in different hosts, including insects. Drosophila melanogaster has been a successful model system to study the immune response to systemic viral infection. Here we investigate the role of the Toll pathway in resistance to oral viral infection in D. melanogaster. We show that several Toll pathway components, including Spätzle, Toll, Pelle and the NF-kB-like transcription factor Dorsal, are required to resist oral infection with Drosophila C virus. Furthermore, in the fat body Dorsal is translocated from the cytoplasm to the nucleus and a Toll pathway target gene reporter is upregulated in response to Drosophila C Virus infection. This pathway also mediates resistance to several other RNA viruses (Cricket paralysis virus, Flock House virus, and Nora virus). Compared with control, viral titres are highly increased in Toll pathway mutants. The role of the Toll pathway in resistance to viruses in D. melanogaster is restricted to oral infection since we do not observe a phenotype associated with systemic infection. We also show that Wolbachia and other Drosophila-associated microbiota do not interact with the Toll pathway-mediated resistance to oral infection. We therefore identify the Toll pathway as a new general inducible pathway that mediates strong resistance to viruses with a route-specific role. These results contribute to a better understanding of viral oral infection resistance in insects, which is particularly relevant in the context of transmission of arboviruses by insect vectors.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/SAU-IMU/120673/2010