Repository logo
 
Publication

Unveiling time in dose-response models to infer host susceptibility to pathogens

dc.contributor.authorPessoa, Delphine
dc.contributor.authorSouto-Maior, Caetano
dc.contributor.authorGjini, Erida
dc.contributor.authorLopes, Joao S
dc.contributor.authorCeña, Bruno
dc.contributor.authorCodeço, Cláudia T
dc.contributor.authorGomes, M Gabriela M
dc.date.accessioned2015-10-05T11:08:50Z
dc.date.available2015-10-05T11:08:50Z
dc.date.issued2014-08-14
dc.description.abstractThe biological effects of interventions to control infectious diseases typically depend on the intensity of pathogen challenge. As much as the levels of natural pathogen circulation vary over time and geographical location, the development of invariant efficacy measures is of major importance, even if only indirectly inferrable. Here a method is introduced to assess host susceptibility to pathogens, and applied to a detailed dataset generated by challenging groups of insect hosts (Drosophila melanogaster) with a range of pathogen (Drosophila C Virus) doses and recording survival over time. The experiment was replicated for flies carrying the Wolbachia symbiont, which is known to reduce host susceptibility to viral infections. The entire dataset is fitted by a novel quantitative framework that significantly extends classical methods for microbial risk assessment and provides accurate distributions of symbiont-induced protection. More generally, our data-driven modeling procedure provides novel insights for study design and analyses to assess interventions.pt_PT
dc.description.sponsorshipFundação para a Ciência e Tecnologia.pt_PT
dc.identifier10.1371/journal.pcbi.1003773
dc.identifier.citationPessoa D, Souto-Maior C, Gjini E, Lopes JS, Cen ̃ a B, et al. (2014) Unveiling Time in Dose-Response Models to Infer Host Susceptibility to Pathogens. PLoS Comput Biol 10(8): e1003773. doi:10.1371/journal.pcbi.1003773pt_PT
dc.identifier.doi10.1371/journal.pcbi.1003773
dc.identifier.doi10.1371/journal.pcbi.1003773
dc.identifier.urihttp://hdl.handle.net/10400.7/346
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherPLOSpt_PT
dc.relationDeveloping the Framework for an Epidemic Forecast Infrastructure
dc.relation.publisherversionhttp://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003773pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPathogenspt_PT
dc.titleUnveiling time in dose-response models to infer host susceptibility to pathogenspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleDeveloping the Framework for an Epidemic Forecast Infrastructure
oaire.awardURIinfo:eu-repo/grantAgreement/EC/FP7/231807/EU
oaire.citation.endPage9pt_PT
oaire.citation.issue8pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titlePLOS Computational Biologypt_PT
oaire.citation.volume10pt_PT
oaire.fundingStreamFP7
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isProjectOfPublication120acf43-5f6e-4b79-a889-031b54eba6a7
relation.isProjectOfPublication.latestForDiscovery120acf43-5f6e-4b79-a889-031b54eba6a7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
journal.pcbi.1003773.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections