Logo do repositório
 
A carregar...
Miniatura
Publicação

Computational fact checking from knowledge networks

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
journal.pone.0128193.pdfartigo principal2.86 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Traditional fact checking by expert journalists cannot keep up with the enormous volume of information that is now generated online. Computational fact checking may significantly enhance our ability to evaluate the veracity of dubious information. Here we show that the complexities of human fact checking can be approximated quite well by finding the shortest path between concept nodes under properly defined semantic proximity metrics on knowledge graphs. Framed as a network problem this approach is feasible with efficient computational techniques. We evaluate this approach by examining tens of thousands of claims related to history, entertainment, geography, and biographical information using a public knowledge graph extracted from Wikipedia. Statements independently known to be true consistently receive higher support via our method than do false ones. These findings represent a significant step toward scalable computational fact-checking methods that may one day mitigate the spread of harmful misinformation.

Descrição

Palavras-chave

Computer Science - Computers and Society cs.SI Physics - Physics and Society

Contexto Educativo

Citação

Ciampaglia GL, Shiralkar P, Rocha LM, Bollen J, Menczer F, Flammini A (2015) Computational Fact Checking from Knowledge Networks. PLoS ONE 10(6): e0128193. doi:10.1371/ journal.pone.0128193

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

PLOS

Coleções

Licença CC

Métricas Alternativas