Browsing by Author "Chaouiya, Claudine"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
- Bringing Dicynodonts Back to Life: Paleobiology and Anatomy of a New Emydopoid Genus from the Upper Permian of MozambiquePublication . Castanhinha, Rui; Araújo, Ricardo; Júnior, Luís C.; Angielczyk, Kenneth D.; Martins, Gabriel G.; Martins, Rui M. S.; Chaouiya, Claudine; Beckmann, Felix; Wilde, FabianDicynodontia represent the most diverse tetrapod group during the Late Permian. They survived the Permo-Triassic extinction and are central to understanding Permo-Triassic terrestrial ecosystems. Although extensively studied, several aspects of dicynodont paleobiology such as, neuroanatomy, inner ear morphology and internal cranial anatomy remain obscure. Here we describe a new dicynodont (Therapsida, Anomodontia) from northern Mozambique: Niassodon mfumukasi gen. et sp. nov. The holotype ML1620 was collected from the Late Permian K5 formation, Metangula Graben, Niassa Province northern Mozambique, an almost completely unexplored basin and country for vertebrate paleontology. Synchrotron radiation based micro-computed tomography (SRµCT), combined with a phylogenetic analysis, demonstrates a set of characters shared with Emydopoidea. All individual bones were digitally segmented allowing a 3D visualization of each element. In addition, we reconstructed the osseous labyrinth, endocast, cranial nerves and vasculature. The brain is narrow and the cerebellum is broader than the forebrain, resembling the conservative, "reptilian-grade" morphology of other non-mammalian therapsids, but the enlarged paraflocculi occupy the same relative volume as in birds. The orientation of the horizontal semicircular canals indicates a slightly more dorsally tilted head posture than previously assumed in other dicynodonts. In addition, synchrotron data shows a secondary center of ossification in the femur. Thus ML1620 represents, to our knowledge, the oldest fossil evidence of a secondary center of ossification, pushing back the evolutionary origins of this feature. The fact that the specimen represents a new species indicates that the Late Permian tetrapod fauna of east Africa is still incompletely known.
- A Discrete Model of Drosophila Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine EffectsPublication . Fauré, Adrien; Vreede, Barbara M. I.; Sucena, Élio; Chaouiya, ClaudineThe Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.
- Diversity and plasticity of Th cell types predicted from regulatory network modellingPublication . Naldi, Aurélien; Carneiro, Jorge; Chaouiya, Claudine; Thieffry, DenisAlternative cell differentiation pathways are believed to arise from the concerted action of signalling pathways and transcriptional regulatory networks. However, the prediction of mammalian cell differentiation from the knowledge of the presence of specific signals and transcriptional factors is still a daunting challenge. In this respect, the vertebrate hematopoietic system, with its many branching differentiation pathways and cell types, is a compelling case study. In this paper, we propose an integrated, comprehensive model of the regulatory network and signalling pathways controlling Th cell differentiation. As most available data are qualitative, we rely on a logical formalism to perform extensive dynamical analyses. To cope with the size and complexity of the resulting network, we use an original model reduction approach together with a stable state identification algorithm. To assess the effects of heterogeneous environments on Th cell differentiation, we have performed a systematic series of simulations considering various prototypic environments. Consequently, we have identified stable states corresponding to canonical Th1, Th2, Th17 and Treg subtypes, but these were found to coexist with other transient hybrid cell types that co-express combinations of Th1, Th2, Treg and Th17 markers in an environment-dependent fashion. In the process, our logical analysis highlights the nature of these cell types and their relationships with canonical Th subtypes. Finally, our logical model can be used to explore novel differentiation pathways in silico.
- EpiLog: A software for the logical modelling of epithelial dynamicsPublication . Varela, Pedro L.; Ramos, Camila V.; Monteiro, Pedro T.; Chaouiya, ClaudineCellular responses are governed by regulatory networks subject to external signals from surrounding cells and to other micro-environmental cues. The logical (Boolean or multi-valued) framework proved well suited to study such processes at the cellular level, by specifying qualitative models of involved signalling pathways and gene regulatory networks. Here, we describe and illustrate the main features of EpiLog, a computational tool that implements an extension of the logical framework to the tissue level. EpiLog defines a collection of hexagonal cells over a 2D grid, which embodies a mono-layer epithelium. Basically, it defines a cellular automaton in which cell behaviours are driven by associated logical models subject to external signals. EpiLog is freely available on the web at http://epilog-tool.org. It is implemented in Java (version ≥1.7 required) and the source code is provided at https://github.com/epilog-tool/epilog under a GNU General Public License v3.0.
- Estimating Attractor Reachability in Asynchronous Logical ModelsPublication . Mendes, Nuno D.; Henriques, Rui; Remy, Elisabeth; Carneiro, Jorge; Monteiro, Pedro T.; Chaouiya, ClaudineLogical models are well-suited to capture salient dynamical properties of regulatory networks. For networks controlling cell fate decisions, cell fates are associated with model attractors (stable states or cyclic attractors) whose identification and reachability properties are particularly relevant. While synchronous updates assume unlikely instantaneous or identical rates associated with component changes, the consideration of asynchronous updates is more realistic but, for large models, may hinder the analysis of the resulting non-deterministic concurrent dynamics. This complexity hampers the study of asymptotical behaviors, and most existing approaches suffer from efficiency bottlenecks, being generally unable to handle cyclical attractors and quantify attractor reachability. Here, we propose two algorithms providing probability estimates of attractor reachability in asynchronous dynamics. The first algorithm, named Firefront, exhaustively explores the state space from an initial state, and provides quasi-exact evaluations of the reachability probabilities of model attractors. The algorithm progresses in breadth, propagating the probabilities of each encountered state to its successors. Second, Avatar is an adapted Monte Carlo approach, better suited for models with large and intertwined transient and terminal cycles. Avatar iteratively explores the state space by randomly selecting trajectories and by using these random walks to estimate the likelihood of reaching an attractor. Unlike Monte Carlo simulations, Avatar is equipped to avoid getting trapped in transient cycles and to identify cyclic attractors. Firefront and Avatar are validated and compared to related methods, using as test cases logical models of synthetic and biological networks. Both algorithms are implemented as new functionalities of GINsim 3.0, a well-established software tool for logical modeling, providing executable GUI, Java API, and scripting facilities.
- Impact of changing cell-cell communication network in models of epithelial pattern formationPublication . Varela, Pedro L.; Monteiro, Pedro T.; Chaouiya, ClaudineWhen modelling multi-cellular systems, one has to account for cell-cell signalling in addition to the molecular networks driving cell behaviours. Here, we aim at exploring how the topology of the cell-cell communication network impacts the behaviour of the whole multicellular system. More precisely, we focus on epithelial pattern formation, on which our question can be rephrased in terms of cell sizes and shapes. Relying on a logical modelling framework, and using a simple lateral inhibition model over a population of epithelial cells, we assess the model behaviours considering a variety of communication networks. This study suggests that reasonable deviations from a fixed grid (with regular hexagonal shaped cells) do not change much the resulting patterns. We further explore the impact of cell shapes and show that characteristics such as network regularity and number of shared neighbours of contacting cells are relevant to qualify such deviations.
- Local Negative Circuits and Cyclic Attractors in Boolean Networks with at most Five ComponentsPublication . Tonello, Elisa; Farcot, Etienne; Chaouiya, ClaudineWe consider the following question on the relationship between the asymptotic behaviors of asynchronous dynamics of Boolean networks and their regulatory structures: Does the presence of a cyclic attractor imply the existence of a local negative circuit in the regulatory graph? When the number of model components n verifies n ≥ 6, the answer is known to be negative. We show that the question can be translated into a Boolean satisfiability problem on n ∙ 2^n variables. A Boolean formula expressing the absence of local negative circuits and a necessary condition for the existence of cyclic attractors is found to be unsatisfiable for n ≤ 5. In other words, for Boolean networks with up to 5 components, the presence of a cyclic attractor requires the existence of a local negative circuit.
- Logical Modeling and Dynamical Analysis of Cellular NetworksPublication . Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, ClaudineThe logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.
- Logical modelling uncovers developmental constraints for primary sex determination of chicken gonadsPublication . Sánchez, Lucas; Chaouiya, ClaudineIn the chicken, sex determination relies on a ZZ (male)/ZW (female) chromosomal system, but underlying mechanisms are still not fully understood. The Z-dosage and the dominant W-chromosome hypotheses have been proposed to underlie primary sex determination. We present a modelling approach, which assembles the current knowledge and permits exploration of the regulation of this process in chickens. Relying on published experimental data, we assembled a gene network, which led to a logical model that integrates both the Z-dosage and dominant W hypotheses. This model showed that the sexual fate of chicken gonads results from the resolution of the mutual inhibition between DMRT1 and FOXL2, where the initial amount of DMRT1 product determines the development of the gonads. In this respect, at the initiation step, a W-factor would function as a secondary device, by reducing the amount of DMRT1 in ZW gonads when the sexual fate of the gonad is settled, that is when the SOX9 functional level is established. Developmental constraints that are instrumental in this resolution were identified. These constraints establish qualitative restrictions regarding the relative transcription rates of the genes DMRT1, FOXL2 and HEMGN. Our model further clarified the role of OESTROGEN in maintaining FOXL2 function during ovary development.
- Majority rules with random tie-breaking in Boolean gene regulatory networksPublication . Chaouiya, Claudine; Ourrad, Ouerdia; Lima, RicardoWe consider threshold boolean gene regulatory networks, where the update function of each gene is described as a majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state. This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions; these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing.