Browsing by Author "Teotónio, Henrique"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- An experimental test on the probability of extinction of new genetic variantsPublication . Chelo, Ivo M.; Nédli, Judit; Gordo, Isabel; Teotónio, HenriqueIn 1927, J.B.S. Haldane reasoned that the probability of fixation of new beneficial alleles is twice their fitness effect. This result, later generalized by M. Kimura, has since become the cornerstone of modern population genetics. There is no experimental test of Haldane's insight that new beneficial alleles are lost with high probability. Here we demonstrate that extinction rates decrease with increasing initial numbers of beneficial alleles, as expected, by performing invasion experiments with inbred lines of the nematode Caenorhabditis elegans. We further show that the extinction rates of deleterious alleles are higher than those of beneficial alleles, also as expected. Interestingly, we also find that for these inbred lines, when at intermediate frequencies, the fate of invaders might not result in their ultimate fixation or loss but on their maintenance. Our study confirms the key results from classical population genetics and highlights that the nature of adaptation can be complex.
- Hermaphrodite life history and the maintenance of partial selfing in experimental populations of Caenorhabditis elegansPublication . Carvalho, Sara; Phillips, Patrick C; Teotónio, HenriqueClassic population genetics theory predicts that mixed reproductive systems, where self reproduction (selfing) and outcrossing co-exist, should not be as common as they are in nature. One means of reconciling theory with observations is to recognize that sexual conflict between males and hermaphrodites and/or constraints in the allocation of resources towards sex functions in hermaphrodites can balance the fitness components of selfing and outcrossing.
- Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) PanelPublication . Noble, Luke M; Chelo, Ivo; Guzella, Thiago; Afonso, Bruno; Riccardi, David D; Ammerman, Patrick; Dayarian, Adel; Carvalho, Sara; Crist, Anna; Pino-Querido, Ania; Shraiman, Boris; Rockman, Matthew V; Teotónio, HenriqueUnderstanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here we report an advanced recombinant inbred line (RIL) quantitative trait locus (QTL) mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across >95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad sense heritability in the CeMEE. While simulations show we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits does not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor (r2 < 10%), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.
- Reproductive assurance drives transitions to self-fertilization in experimental Caenorhabditis elegansPublication . Theologidis, Ioannis; Chelo, Ivo M; Goy, Christine; Teotónio, HenriqueEvolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of 'reproductive assurance' suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.
- THE OPPORTUNITY FOR BALANCING SELECTION IN EXPERIMENTAL POPULATIONS OFCAENORHABDITIS ELEGANSPublication . Chelo, Ivo M.; Teotónio, HenriqueThe role of balancing selection in maintaining diversity during the evolution of sexual populations to novel environments is poorly understood. To address this issue, we studied the impact of two mating systems, androdioecy and dioecy, on genotype distributions during the experimental evolution of Caenorhabditis elegans. We analyzed the temporal trajectories of 334 single nucleotide polymorphisms, covering 1/3 of the genome, and found extensive allele frequency changes and little loss of heterozygosities after 100 generations. As modeled with numerical simulations, SNP differentiation was consistent with genetic drift and average fitness effects of 2%, assuming that selection acted independently at each locus. Remarkably, inbreeding by self-fertilization was of little consequence to SNP differentiation. Modeling selection on deleterious recessive alleles suggests that the initial evolutionary dynamics can be explained by associative overdominance, but not the later stages because much lower heterozygosities would be maintained during experimental evolution. By contrast, models with selection on true overdominant loci can explain the heterozygote excess observed at all periods, particularly when negative epistasis or independent fitness effects were considered. Overall, these findings indicate that selection at single loci, including purging of recessive alleles, underlies most of the genetic differentiation accomplished during the experiment. Nonetheless, they also imply that maintenance of genetic diversity may in large part be due to balancing selection at multiple loci.
- The role of hermaphrodites in the experimental evolution of increased outcrossing rates in Caenorhabditis elegansPublication . Carvalho, Sara; Chelo, Ivo M; Goy, Christine; Teotónio, HenriqueWhy most organisms reproduce via outcrossing rather than selfing is a central question in evolutionary biology. It has long ago been suggested that outcrossing is favoured when it facilitates adaptation to novel environments. We have previously shown that the experimental evolution of increased outcrossing rates in populations of the male-hermaphrodite nematode Caenorhabditis elegans were correlated with the experimental evolution of increased male fitness. However, it is unknown whether outcrossing led to adaptation, and if so, which fitness components can explain the observed increase in outcrossing rates.
- The role of hermaphrodites in the experimental evolution of increased outcrossing rates in Caenorhabditis elegansPublication . Carvalho, Sara; Chelo, Ivo M; Goy, Christine; Teotónio, HenriqueWhy most organisms reproduce via outcrossing rather than selfing is a central question in evolutionary biology. It has long ago been suggested that outcrossing is favoured when it facilitates adaptation to novel environments. We have previously shown that the experimental evolution of increased outcrossing rates in populations of the male-hermaphrodite nematode Caenorhabditis elegans were correlated with the experimental evolution of increased male fitness. However, it is unknown whether outcrossing led to adaptation, and if so, which fitness components can explain the observed increase in outcrossing rates.