Population and Conservation Genetics
Permanent URI for this community
Genetic data are increasingly used in areas such as anthropology, conservation biology, ecology and evolutionary biology. These data are used to address issues related to the demographic history of populations and species. This includes the detection, quantification, and dating of population collapses, expansions, or admixture processes, using neutral markers and the identification of markers under selection. Our group is interested in developing new and using/testing existing methods to uncover such events for a wide range of species. The aim is to understand the recent evolutionary history of these species and the limits of genetic data as inferential tools. Applications go from human evolution (e.g. the Neolithic transition in Europe) to conservation genetics of wild (e.g. orang-utans, lemurs) and domesticated species (e.g. cattle, sheep).
Browse
Browsing Population and Conservation Genetics by Issue Date
Results Per Page
Sort Options
- Spatial Variation in Density and Total Size Estimates in Fragmented Primate Populations: The Golden-Crowned Sifaka (Propithecus tattersalli)Publication . Quemere, E.; Champeau, J.; Besolo, A.; Rasolondraibe, E.; Rabarivola, C.The golden-crowned sifaka (Propithecus tattersalli) is an endangered lemur species found only in the Daraina region, a very restricted area in north-eastern Madagascar. Its forest habitat is highly fragmented and expected to suffer from significant changes in the near future. The species is poorly known and only one census study, carried out in 2000, has ever been published. It is thus crucial to update the conservation status of the golden-crowned sifaka. before major anthropogenic environmental changes take place. Using the line-transect approach, we estimated the species density in the main forest fragments located in both the peripheral and central parts of the distribution range, including both protected and unprotected areas. In parallel, we tried to determine whether an edge effect could be detected by comparing densities at different distances from the forest edges. We found important variation of sifaka densities among forest fragments. The total species abundance is thus difficult to determine, but we estimated that it is likely to be over 18,000, two to three times higher than previously thought. However, our data also suggested that most P. tattersalli live in forests located in the central part of the distribution range and that the estimated densities in the central part were high (> 80 individuals/km(2)). Two forest fragments, found to host a large part of the total population, are currently outside the managed area and their incorporation to the managed area is strongly recommended. Lastly, as expected for a folivorous and not heavily hunted species, our results are consistent with the hypothesis that this species does not experience a clear edge effect, at least during the first half of the dry season. This could be due to a high resiliency to habitat fragmentation or to the fact that fragmentation has been going on for some time.
- Landscape genetics of an endangered lemur (Propithecus tattersalli) within its entire fragmented rangePublication . Quemere, E.; Crouau-Roy, B.; Rabarivola, C.; Louis, EE.; Chikhi, L.Habitat fragmentation may strongly reduce individuals' dispersal among resource patches and hence influence population distribution and persistence. We studied the impact of landscape heterogeneity on the dispersal of the golden-crowned sifaka (Propithecus tattersalli), an endangered social lemur species living in a restricted and highly fragmented landscape. We combined spatial analysis and population genetics methods to describe population units and identify the environmental factors which best predict the rates and patterns of genetic differentiation within and between populations. We used non-invasive methods to genotype 230 individuals at 13 microsatellites in all the main forest fragments of its entire distribution area. Our analyses suggest that the Manankolana River and geographical distance are the primary structuring factors, while a national road crossing the region does not seem to impede gene flow. Altogether, our results are in agreement with a limited influence of forest habitat connectivity on gene flow patterns (except for North of the species' range), suggesting that dispersal is still possible today among most forest patches for this species. Within forest patches, we find that dispersal is mainly among neighbouring social groups, hence confirming previous behavioural observations
- Signals of recent spatial expansions in the grey mouse lemur (Microcebus murinus)Publication . Schneider, N.; Chikhi, L.; Currat, M.; Radespiel, U.Pleistocene events have shaped the phylogeography of many taxa worldwide. Their genetic signatures in tropical species have been much less explored than in those living in temperate regions. We analysed the genetic structure of a Malagasy primate species, a mouse lemur with a wide distribution (M. murinus), in order to investigate such phylogeographic processes on a large tropical island. We also evaluated the effects of anthropogenic pressures (fragmentation/deforestation) and natural features (geographic distance, rivers) on genetic structure in order to complement our understanding of past and present processes of genetic differentiation.
- 2BAD: an application to estimate the parental contributions during two independent admixture eventsPublication . Bray, TC.; Sousa, VC.; Parreira, B.; Bruford, MW.; Chikhi, L.Several approaches have been developed to calculate the relative contributions of parental populations in single admixture event scenarios, including Bayesian methods. In many breeds and populations, it may be more realistic to consider multiple admixture events. However, no approach has been developed to date to estimate admixture in such cases. This report describes a program application, 2BAD (for 2-event Bayesian ADmixture), which allows the consideration of up to two independent admixture events involving two or three parental populations and a single admixed population, depending on the number of populations sampled. For each of these models, it is possible to estimate several parameters (admixture, effective sizes, etc.) using an approximate Bayesian computation approach. In addition, the program allows comparing pairs of admixture models, determining which is the most likely given data. The application was tested through simulations and was found to provide good estimates for the contribution of the populations at the two admixture events. We were also able to determine whether an admixture model was more likely than a simple split model.
- The utility of existing passerine microsatellite markers for genetic studies in endangered species: as demonstrated for a critically endangered forest bird endemic to Réunion Island, the Réunion cuckooshrike (Coracina newtoni)Publication . Salmona, J.; Dawson, DA.; Fouillot, D.; Ghestemme, T.; Thebaud, C.; Chikhi, L.; Salamolard, M.Genetic data are increasingly recognized for their utility in conservation programs. However, many endangered species belong to families that have been understudied. Due to the urgency of their conservation status it is important to quickly identify polymorphic microsatellite loci from available resources. We show for the Re´union Cuckoo shrike Coracina newtoni, that this strategy can be very useful. Using 110 passerine microsatellite primer sets we identified eighteen polymorphic loci and tested them in 25 C. newtoni individuals. Following a Bonferroni correction one pair of loci displayed linkage disequilibrium
- Signature of a Pre-Human Population Decline in the Critically Endangered Reunion Island Endemic Forest Bird Coracina newtoniPublication . Salmona, Jordi; Salamolard, Marc; Fouillot, Damien; Ghestemme, Thomas; Larose, Jerry; Centon, Jean-François; Sousa, Vitor; Dawson, Deborah A.; Thebaud, Christophe; Chikhi, LounèsThe exceptional biodiversity of Reunion Island is threatened by anthropogenic landscape changes that took place during the 350 years of human colonization. During this period the human population size increased dramatically from 250 to 800,000. The arrival of humans together with the development of agriculture, invasive species such as rats and cats, and deforestation has lead to the extinction of more than half of the original vertebrate species of the island. For the remaining species, significant work is being carried out to identify threats and conservation status, but little genetic work has been carried on some of the most endangered species. In the last decade theoretical studies have shown the ability of neutral genetic markers to infer the demographic history of endangered species and identify and date past population size changes (expansions or bottlenecks). In this study we provide the first genetic data on the critically endangered species the Reunion cuckoo-shrike Coracina newtoni. The Reunion cuckoo-shrike is a rare endemic forest bird surviving in a restricted 12-km(2) area of forested uplands and mountains. The total known population consists of less than one hundred individuals out of which 45 were genotyped using seventeen polymorphic microsatellite loci. We found a limited level of genetic variability and weak population structure, probably due to the limited geographic distribution. Using Bayesian methods, we identified a strong decline in population size during the Holocene, most likely caused by an ancient climatic or volcanic event around 5000 years ago. This result was surprising as it appeared in apparent contradiction with the accepted theory of recent population collapse due to deforestation and predator introduction. These results suggest that new methods allowing for more complex demographic models are necessary to reconstruct the demographic history of populations.
- Effective Population Size Dynamics and the Demographic Collapse of Bornean Orang-UtansPublication . Sharma, Reeta; Arora, Natasha; Goossens, Benoit; Nater, Alexander; Morf, Nadja; Salmona, Jordi; Bruford, Michael W.; Van Schaik, Carel P.; Krützen, Michael; Chikhi, LounèsBornean orang-utans experienced a major demographic decline and local extirpations during the Pleistocene and Holocene due to climate change, the arrival of modern humans, of farmers and recent commercially-driven habitat loss and fragmentation. The recent loss of habitat and its dramatic fragmentation has affected the patterns of genetic variability and differentiation among the remaining populations and increased the extinction risk of the most isolated ones. However, the contribution of recent demographic events to such genetic patterns is still not fully clear. Indeed, it can be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric demographic events. Here, we investigated the genetic structure and population size dynamics of orang-utans from different sites. Altogether 126 individuals were analyzed and a full-likelihood Bayesian approach was applied. All sites exhibited clear signals of population decline. Population structure is known to generate spurious bottleneck signals and we found that it does indeed contribute to the signals observed. However, population structure alone does not easily explain the observed patterns. The dating of the population decline varied across sites but was always within the 200-2000 years period. This suggests that in some sites at least, orang-utan populations were affected by demographic events that started before the recent anthropogenic effects that occurred in Borneo. These results do not mean that the recent forest exploitation did not leave its genetic mark on orang-utans but suggests that the genetic pool of orang-utans is also impacted by more ancient events. While we cannot identify the main cause for this decline, our results suggests that the decline may be related to the arrival of the first farmers or climatic events, and that more theoretical work is needed to understand how multiple demographic events impact the genome of species and how we can assess their relative contributions.
- Two Different High Throughput Sequencing Approaches Identify Thousands of De Novo Genomic Markers for the Genetically Depleted Bornean ElephantPublication . Sharma, Reeta; Goossens, Benoit; Kun-Rodrigues, Célia; Teixeira, Tatiana; Othman, Nurzhafarina; Boone, Jason Q.; Jue, Nathaniel K.; Obergfell, Craig; O'Neill, Rachel J.; Chikhi, LounèsHigh throughput sequencing technologies are being applied to an increasing number of model species with a high-quality reference genome. The application and analyses of whole-genome sequence data in non-model species with no prior genomic information are currently under way. Recent sequencing technologies provide new opportunities for gathering genomic data in natural populations, laying the empirical foundation for future research in the field of conservation and population genomics. Here we present the case study of the Bornean elephant, which is the most endangered subspecies of Asian elephant and exhibits very low genetic diversity. We used two different sequencing platforms, the Roche 454 FLX (shotgun) and Illumina, GAIIx (Restriction site associated DNA, RAD) to evaluate the feasibility of the two methodologies for the discovery of de novo markers (single nucleotide polymorphism, SNPs and microsatellites) using low coverage data. Approximately, 6,683 (shotgun) and 14,724 (RAD) SNPs were detected within our elephant sequence dataset. Genotyping of a representative sample of 194 SNPs resulted in a SNP validation rate of ~83 to 94% and 17% of the loci were polymorphic with a low diversity (H(o)=0.057). Different numbers of microsatellites were identified through shotgun (27,226) and RAD (868) techniques. Out of all di-, tri-, and tetra-microsatellite loci, 1,706 loci had sufficient flanking regions (shotgun) while only 7 were found with RAD. All microsatellites were monomorphic in the Bornean but polymorphic in another elephant subspecies. Despite using different sample sizes, and the well known differences in the two platforms used regarding sequence length and throughput, the two approaches showed high validation rate. The approaches used here for marker development in a threatened species demonstrate the utility of high throughput sequencing technologies as a starting point for the development of genomic tools in a non-model species and in particular for a species with low genetic diversity.
- The scaling of genetic diversity in a changing and fragmented worldPublication . Arenas, M.; Mona, S.; Trochet, A.; Sramkova Hanulova, A.; Currat, M.; Ray, N.; Chikhi, L.; Rasteiro, R.; Schmeller, D.S.; Excoffier, L.Most species do not live in a constant environment over space or time. Their environment is often heterogeneous with a huge variability in resource availability and exposure to pathogens or predators, which may affect the local densities of the species. Moreover, the habitat might be fragmented, preventing free and isotropic migrations between local sub-populations (demes) of a species, making some demes more isolated than others. For example, during the last ice age populations of many species migrated towards refuge areas from which re-colonization originated when conditions improved. However, populations that could not move fast enough or could not adapt to the new environmental conditions faced extinctions. Populations living in these types of dynamic environments are often referred to as metapopulations and modeled as an array of subdivisions (or demes) that exchange migrants with their neighbors. Several studies have focused on the description of their demography, probability of extinction and expected patterns of diversity at different scales. Importantly, all these evolutionary processes may affect genetic diversity, which can affect the chance of populations to persist. In this chapter we provide an overview on the consequences of fragmentation, long-distance dispersal, range contractions and range shifts on genetic diversity. In addition, we describe new methods to detect and quantify underlying evolutionary processes from sampled genetic data.
- The demographic history of populations experiencing asymmetric gene flow: combining simulated and empirical dataPublication . Paz-Vinas, I.; Quéméré, E.; Chikhi, L.; Loot, G.; Blanchet, S.Population structure can significantly affect genetic-based demographic inferences, generating spurious bottleneck-like signals. Previous studies have typically assumed island or stepping-stone models, which are characterized by symmetric gene flow. However, many organisms are characterized by asymmetric gene flow. Here, we combined simulated and empirical data to test whether asymmetric gene flow affects the inference of past demographic changes. Through the analysis of simulated genetic data with three methods (i.e. bottleneck, M-ratio and msvar), we demonstrated that asymmetric gene flow biases past demographic changes. Most biases were towards spurious signals of expansion, albeit their strength depended on values of effective population size and migration rate. It is noteworthy that the spurious signals of demographic changes also depended on the statistical approach underlying each of the three methods. For one of the three methods, biases induced by asymmetric gene flow were confirmed in an empirical multispecific data set involving four freshwater fish species (Squalius cephalus, Leuciscus burdigalensis, Gobio gobio and Phoxinus phoxinus). However, for the two other methods, strong signals of bottlenecks were detected for all species and across two rivers. This suggests that, although potentially biased by asymmetric gene flow, some of these methods were able to bypass this bias when a bottleneck actually occurred. Our results show that population structure and dispersal patterns have to be considered for proper inference of demographic changes from genetic data.