Electron Microscopy Unit
Permanent URI for this community
At the Electron Microscopy Facility at the Instituto Gulbenkian de Ciência we believe that electron microscopy is a powerful tool that can be used to address research questions in the life sciences. With this in mind we aim to: provide centralized, high quality electron microscopy infrastructure to support scientific investigation, offer electron microscopy services, mentorship and skill training, collaborate with researchers within our institute, our country and the scientific community to foster knowledge of technical developments in electron microscopy.
Browse
Browsing Electron Microscopy Unit by Issue Date
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Sialoglycoproteins and N-Glycans from Secreted Exosomes of Ovarian Carcinoma CellsPublication . Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M.; Conradt, Harald S.; Costa, JúliaExosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.
- Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectorsPublication . Vale-Costa, Sílvia; Alenquer, Marta; Sousa, Ana Laura; Kellen, Bárbara; Ramalho, José; Tranfield, Erin M.; Amorim, Maria JoãoInfluenza A virus assembly is an unclear process, whereby individual virion components form an infectious particle. The segmented nature of the influenza A genome imposes a problem to assembly because it requires packaging of eight distinct RNA particles (vRNPs). It also allows genome mixing from distinct parental strains, events associated with influenza pandemic outbreaks. It is important to public health to understand how segmented genomes assemble, a process that is dependent on the transport of components to assembly sites. Previously, it has been shown that vRNPs are carried by recycling endosome vesicles, resulting in a change of Rab11 distribution. Here, we describe that vRNP binding to recycling endosomes impairs recycling endosome function, by competing for Rab11 binding with family-interacting proteins, and that there is a causal relationship between Rab11 ability to recruit family-interacting proteins and Rab11 redistribution. This competition reduces recycling sorting at an unclear step, resulting in clustering of single- and double-membraned vesicles. These morphological changes in Rab11 membranes are indicative of alterations in protein and lipid homeostasis during infection. Vesicular clustering creates hotspots of the vRNPs that need to interact to form an infectious particle.
- Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregationPublication . Marteil, Gaëlle; Guerrero, Adan; Vieira, André F; de Almeida, Bernardo P; Machado, Pedro; Mendonça, Susana; Mesquita, Marta; Villarreal, Beth; Fonseca, Irina; Francia, Maria E; Dores, Katharina; Martins, Nuno P; Jana, Swadhin C; Tranfield, Erin M; Barbosa-Morais, Nuno L; Paredes, Joana; Pellman, David; Godinho, Susana A; Bettencourt-Dias, MónicaCentrosomes are the major microtubule organising centres of animal cells. Deregulation in their number occurs in cancer and was shown to trigger tumorigenesis in mice. However, the incidence, consequence and origins of this abnormality are poorly understood. Here, we screened the NCI-60 panel of human cancer cell lines to systematically analyse centriole number and structure. Our screen shows that centriole amplification is widespread in cancer cell lines and highly prevalent in aggressive breast carcinomas. Moreover, we identify another recurrent feature of cancer cells: centriole size deregulation. Further experiments demonstrate that severe centriole over-elongation can promote amplification through both centriole fragmentation and ectopic procentriole formation. Furthermore, we show that overly long centrioles form over-active centrosomes that nucleate more microtubules, a known cause of invasiveness, and perturb chromosome segregation. Our screen establishes centriole amplification and size deregulation as recurrent features of cancer cells and identifies novel causes and consequences of those abnormalities.