Browsing by Issue Date, starting with "2014-01"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Controlling Hox gene expression and activity to build the vertebrate axial skeletonPublication . Casaca, Ana; Santos, Ana Cristina; Mallo, MoisésIt has long been known that Hox genes are central players in patterning the vertebrate axial skeleton. Extensive genetic studies in the mouse have revealed that the combinatorial activity of Hox genes along the anterior-posterior body axis specifies different vertebral identities. In addition, Hox genes were instrumental for the evolutionary diversification of the vertebrate body plan. In this review, we focus on fundamental questions regarding the intricate mechanisms controlling Hox gene activity. In particular, we discuss the functional relevance of the precise timing of Hox gene activation in the embryo. Moreover, we provide insight into the epigenetic regulatory mechanisms that are likely to control this process and are responsible for the maintenance of spatially restricted Hox expression domains throughout embryonic development. We also analyze how specific features of each Hox protein may contribute to the functional diversity of Hox family. Altogether, the work reviewed here further supports the notion that the Hox program is far more complex than initially assumed. Exciting new findings will surely emerge in the years ahead.
- Genetic diversity of serotype A foot-and-mouth disease viruses in Kenya from 1964 to 2013; implications for control strategies in eastern AfricaPublication . Wekesa, Sabenzia N.; Sangula, Abraham K.; Belsham, Graham J.; Muwanika, Vincent B.; Heller, Rasmus; Balinda, Sheila N.; Masembe, Charles; Siegismund, Hans R.Serotype A is the most genetically and antigenically diverse of the foot-and-mouth disease virus (FMDV) serotypes. Records of its occurrence in Kenya date back to 1952 and the antigenic diversity of the outbreak viruses in this region is reflected by the current use of two different vaccine strains (K5/1980 and K35/1980) and previous use of two other strains (K18/66 and K179/71). This study aimed at enhancing the understanding of the patterns of genetic variation of serotype A FMDV in Kenya. The complete VP1 coding region sequences of 38 field isolates, identified as serotype A FMDV, collected between 1964 and 2013 were determined. Coalescent-based methods were used to infer times of divergence of the virus strains and the evolutionary rates alongside 27 other serotype A FMDV sequences from Genbank and the World Reference Laboratory (WRL). This study represents the first comprehensive genetic analysis of serotype A FMDVs from Kenya. The study detected four previously defined genotypes/clusters (termed G-I, G-III, G-VII and G-VIII), within the Africa topotype, together with a fifth lineage that has apparently emerged from within G-I; these different lineages have each had a countrywide distribution. Genotypes G-III and G-VIII that were first isolated in 1964 are now apparently extinct; G-VII was last recorded in 2005, while G-I (including the new lineage) is currently in widespread circulation. High genetic diversity, widespread distribution and transboundary spread of serotype A FMDVs across the region of eastern Africa was apparent. Continuous surveillance for the virus, coupled to genetic and antigenic characterization is recommended for improved regional control strategies.
- RATES OF FITNESS DECLINE AND REBOUND SUGGEST PERVASIVE EPISTASISPublication . Perfeito, L.; Sousa, A.; Bataillon, T.; Gordo, I.Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear--a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of -0.01, and an effective number of traits nine in mutS(-) E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.
- Contribution of PTPN22, CD28, CTLA-4 and ZAP-70 variants to the risk of type 1 diabetes in TunisiansPublication . Zouidi, Ferjeni; Stayoussef, Mouna; Bouzid, Dorra; Fourati, Hajer; Abida, Olfa; Ayed, M. Ben; Kammoun, Thouraya; Hachicha, Monjia; Penha-Gonçalves, Carlos; Masmoudi, HatemType 1 diabetes (T1D) is caused by an immune-mediated destruction of the insulin-producing β-cells. Several studies support the involvement of T cell activation molecules. In order to underline the role of the genes involved in this pathway, we investigated, using the Sequenom MassARRAY platform, polymorphisms of sixteen single-nucleotide polymorphisms (SNPs) belonging to PTPN22, CD28, CTLA-4, and ZAP-70 genes in 76 T1D patients and 162 unrelated healthy controls from Southern Tunisia. We confirmed the association with PTPN22 (rs2476601, Corrected P (Pcorr)=0.002, OR=6.20) and CD28 gene (rs1879877, Pcorr=0.003; OR=4.27 and rs3181096, Pcorr=0.02; OR=1.73). We also identified an association with rs17695937 of ZAP-70 gene (Pcorr=0.02, OR=1.87). Our results suggest a significant effect on T1D susceptibility for A-C-A-G-C and T-C-C-T-A-C haplotypes, of ZAP-70 and CD28 genes, respectively. In addition, (A-G-C) combination of ZAP-70/CD28 gene was significantly increased in T1D patients as compared to controls, suggesting the possible interaction between these genes. These results confirm the involvement of PTPN22 and CD28 genes in the genetic susceptibility to T1D. Interestingly, ZAP-70 seems to contribute to the susceptibility to the disease in our population. However, this finding has to be confirmed in further studies.
- Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviorsPublication . Keller, Roberto A; Peeters, Christian; Beldade, PatríciaThe concerted evolution of morphological and behavioral specializations has compelling examples in ant castes. Unique to ants is a marked divergence between winged queens and wingless workers, but morphological specializations for behaviors on the ground have been overlooked. We analyzed thorax morphology of queens and workers in species from 21 of the 25 ant subfamilies. We uncovered unique skeletomuscular modifications in workers that presumably increase power and flexibility of head-thorax articulation, emphasizing that workers are not simply wingless versions of queens. We also identified two distinct types of queens and showed repeated evolutionary associations with strategies of colony foundation. Solitary founding queens that hunt have a more worker-like thorax. Our results reveal that ants invest in the relative size of thorax segments according to their tasks. Versatility of head movements allows for better manipulation of food and objects, which arguably contributed to the ants' ecological and evolutionary success. DOI: http://dx.doi.org/10.7554/eLife.01539.001.
- Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithmsPublication . Greminger, Maja P; Stölting, Kai N; Nater, Alexander; Goossens, Benoit; Arora, Natasha; Bruggmann, Rémy; Patrignani, Andrea; Nussberger, Beatrice; Sharma, Reeta; Kraus, Robert H S; Ambu, Laurentius N; Singleton, Ian; Chikhi, Lounes; van Schaik, Carel P; Krützen, MichaelHigh-throughput sequencing has opened up exciting possibilities in population and conservation genetics by enabling the assessment of genetic variation at genome-wide scales. One approach to reduce genome complexity, i.e. investigating only parts of the genome, is reduced-representation library (RRL) sequencing. Like similar approaches, RRL sequencing reduces ascertainment bias due to simultaneous discovery and genotyping of single-nucleotide polymorphisms (SNPs) and does not require reference genomes. Yet, generating such datasets remains challenging due to laboratory and bioinformatical issues. In the laboratory, current protocols require improvements with regards to sequencing homologous fragments to reduce the number of missing genotypes. From the bioinformatical perspective, the reliance of most studies on a single SNP caller disregards the possibility that different algorithms may produce disparate SNP datasets.
- Bioinformatics Projects Supporting Life-Sciences Learning in High SchoolsPublication . Marques, Isabel; Almeida, Paulo; Alves, Renato; Dias, Maria João; Godinho, Ana; Pereira-Leal, José B.The interdisciplinary nature of bioinformatics makes it an ideal framework to develop activities enabling enquiry-based learning. We describe here the development and implementation of a pilot project to use bioinformatics-based research activities in high schools, called "Bioinformatics@school." It includes web-based research projects that students can pursue alone or under teacher supervision and a teacher training program. The project is organized so as to enable discussion of key results between students and teachers. After successful trials in two high schools, as measured by questionnaires, interviews, and assessment of knowledge acquisition, the project is expanding by the action of the teachers involved, who are helping us develop more content and are recruiting more teachers and schools.