Browsing by Issue Date, starting with "2016-09"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside MacrophagesPublication . Durão, Paulo; Gülereşi, Daniela; Proença, João; Gordo, IsabelThe evolution of multiple-antibiotic-resistant bacteria is an increasing global problem. Even though mutations causing resistance usually incur a fitness cost in the absence of antibiotics, the magnitude of such costs varies across environments and genomic backgrounds. We studied how the combination of mutations that confer resistance to rifampin (Rif(r)) and streptomycin (Str(r)) affects the fitness of Escherichia coli when it interacts with cells from the immune system, i.e., macrophages (Mϕs). We found that 13 Rif(r) Str(r) doubly resistant genotypes, of the 16 tested, show a survival advantage inside Mϕs, indicating that double resistance can be highly beneficial in this environment. Our results suggest that there are multiple paths to acquire multiple-drug resistance in this context, i.e., if a clone carrying Rif(r) allele H526 or S531 acquires a second mutation conferring Str(r), the resulting double mutant has a high probability of showing increased survival inside Mϕs. On the other hand, we found two cases of sign epistasis between mutations, leading to a significant decrease in bacterial survival. Remarkably, infection of Mϕs with one of these combinations, K88R+H526Y, resulted in an altered pattern of gene expression in the infected Mϕs. This indicates that the fitness effects of resistance may depend on the pattern of gene expression of infected host cells. Notwithstanding the benefits of resistance found inside Mϕs, the Rif(r) Str(r) mutants have massive fitness costs when the bacteria divide outside Mϕs, indicating that the maintenance of double resistance may depend on the time spent within and outside phagocytic cells.
- IgA Structure Variations Associate with Immune Stimulations and IgA Mesangial DepositionPublication . Oruc, Zeliha; Oblet, Christelle; Boumediene, Ahmed; Druilhe, Anne; Pascal, Virginie; Le Rumeur, Elisabeth; Cuvillier, Armelle; El Hamel, Chahrazed; Lecardeur, Sandrine; Leanderson, Tomas; Morelle, Willy; Demengeot, Jocelyne; Aldigier, Jean-Claude; Cogné, MichelIgA1 mesangial deposition is the hallmark of IgA nephropathy and Henoch-Schönlein purpura, the onset of which often follows infections. Deposited IgA has been reported as polymeric, J chain associated, and often, hypogalactosylated but with no information concerning the influence of the IgA repertoire or the link between immune stimuli and IgA structure. We explored these issues in the α1KI mouse model, which produces polyclonal human IgA1 prone to mesangial deposition. Compared with mice challenged by a conventional environment, mice in a specific pathogen-free environment had less IgA deposition. However, serum IgA of specific pathogen-free mice showed more galactosylation and much lower polymerization. Notably, wild-type, α1KI, and even J chain-deficient mice showed increased polymeric serum IgA on exposure to pathogens. Strict germfree conditions delayed but did not completely prevent deposition; mice housed in these conditions had very low serum IgA levels and produced essentially monomeric IgA. Finally, comparing monoclonal IgA1 that had different variable regions and mesangial deposition patterns indicated that, independently of glycosylation and polymerization, deposition might also depend on IgA carrying specific variable domains. Together with IgA quantities and constant region post-translational modifications, repertoire changes during immune responses might, thus, modulate IgA propensity to deposition. These IgA features are not associated with circulating immune complexes and C3 deposition and are more pertinent to an initial IgA deposition step preceding overt clinical symptoms in patients.
- CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett’s Esophagus Malignant ProgressionPublication . Cardoso, Joana; Mesquita, Marta; Dias Pereira, António; Bettencourt-Dias, Mónica; Chaves, Paula; Pereira-Leal, José B.Barrett's esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett's malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett's progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett's samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett's esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett's esophagus neoplastic progression.
- Regulatory T cells control strain specific resistance to Experimental Autoimmune ProstatitisPublication . Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence.
- The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tagPublication . Szabó, Eszter C.; Manguinhas, Rita; Fonseca, RosalinaPersistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.
- Drosophila Adaptation to Viral Infection through Defensive Symbiont EvolutionPublication . Paulo, Tânia F.; Nolte, Viola; Schlötterer, Christian; Sucena, Élio; Teixeira, LuisMicrobial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.