Browsing by Issue Date, starting with "2017-07"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- The regulator LdhR and the d-lactate dehydrogenase LdhA of Burkholderia multivorans play a role in carbon overflow and in planktonic cellular aggregates formationPublication . Silva, Inês N.; Ramires, Marcelo J.; Azevedo, Lisa A.; Guerreiro, Ana R.; Tavares, Andreia C.; Becker, Jörg D.; Moreira, Leonilde M.LysR-type transcriptional regulators (LTTR) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several bacteria, few have been characterized in Burkholderia Here, we showed that gene ldhR of B. multivorans encoding a LTTR is co-transcribed with ldhA encoding a d-lactate dehydrogenase, and evaluate their implication in virulence traits like exopolysaccharide (EPS) synthesis and biofilm formation. Comparison of wild-type (WT) and its isogenic ΔldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cells' viability in the presence of LdhR. Loss of viability in WT cells was caused by intracellular acidification as consequence of cumulative organic acids secretion including d-lactate, this last one absent from the ΔldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1000 μm after 24 hours in liquid cultures; in contrast to ΔldhR mutant aggregates that never grew more than 60 μm. Overexpression of d-lactate dehydrogenase LdhA in the ΔldhR mutant partially restored formed aggregates size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 out of 74. As CF patients' lung environment is microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adaptation to this environment.IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several microorganisms. Among them are the Burkholderia cepacia complex bacteria which cause progressive deterioration of lung function and, in some patients, might develop into fatal necrotizing pneumoniae with bacteremia, known as "cepacia syndrome". Burkholderia pathogenesis is multifactorial since they express several virulence factors, form biofilms, and are highly resistant to antimicrobial compounds, making their eradication from the CF patients' airways very difficult. As Burkholderia is commonly found in the CF lungs in the form of cell aggregates and biofilms, the need to investigate the mechanisms of cellular aggregation is obvious. In this study we demonstrate the importance of a d-lactate dehydrogenase and a regulator, in regulating carbon overflow, cellular aggregates and surface-attached biofilm formation. This not only enhances our understanding of Burkholderia pathogenesis, but can also lead to the development of drugs against these proteins to circumvent biofilm formation.
- Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerancePublication . Remy, Estelle; Niño-González, María; Godinho, Cláudia P.; Cabrito, Tânia R.; Teixeira, Miguel C.; Sá-Correia, Isabel; Duque, PaulaSoil contamination is a major hindrance for plant growth and development. The lack of effective strategies to remove chemicals released into the environment has raised the need to increase plant resilience to soil pollutants. Here, we investigated the ability of two Saccharomyces cerevisiae plasma-membrane transporters, the Major Facilitator Superfamily (MFS) member Tpo1p and the ATP-Binding Cassette (ABC) protein Pdr5p, to confer Multiple Drug Resistance (MDR) in Arabidopsis thaliana. Transgenic plants expressing either of the yeast transporters were undistinguishable from the wild type under control conditions, but displayed tolerance when challenged with the herbicides 2,4-D and barban. Plants expressing ScTPO1 were also more resistant to the herbicides alachlor and metolachlor as well as to the fungicide mancozeb and the Co(2+), Cu(2+), Ni(2+), Al(3+) and Cd(2+) cations, while ScPDR5-expressing plants exhibited tolerance to cycloheximide. Yeast mutants lacking Tpo1p or Pdr5p showed increased sensitivity to most of the agents tested in plants. Our results demonstrate that the S. cerevisiae Tpo1p and Pdr5p transporters are able to mediate resistance to a broad range of compounds of agricultural interest in yeast as well as in Arabidopsis, underscoring their potential in future biotechnological applications.
- Commensal-to-pathogen transition: One-single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage interactionPublication . Proença, João T.; Barral, Duarte C.; Gordo, IsabelEscherichia coli is both a harmless commensal in the intestines of many mammals, as well as a dangerous pathogen. The evolutionary paths taken by strains of this species in the commensal-to-pathogen transition are complex and can involve changes both in the core genome, as well in the pan-genome. One way to understand the likely paths that a commensal strain of E. coli takes when evolving pathogenicity is through experimentally evolving the strain under the selective pressures that it will have to withstand as a pathogen. Here, we report that a commensal strain, under continuous pressure from macrophages, recurrently acquired a transposable element insertion, which resulted in two key phenotypic changes: increased intracellular survival, through the delay of phagosome maturation and increased ability to escape macrophages. We further show that the acquisition of the pathoadaptive traits was accompanied by small but significant changes in the transcriptome of macrophages upon infection. These results show that under constant pressures from a key component of the host immune system, namely macrophage phagocytosis, commensal E. coli rapidly acquires pathoadaptive mutations that cause transcriptome changes associated to the host-microbe duet.
- The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae.Publication . Almeida-Carvalho, Maria J.; Berh, Dimitri; Braun, Andreas; Chen, Yi-chun; Eichler, Katharina; Eschbach, Claire; Fritsch, Pauline M. J.; Gerber, Bertram; Hoyer, Nina; Jiang, Xiaoyi; Kleber, Jörg; Klämbt, Christian; König, Christian; Louis, Matthieu; Michels, Birgit; Miroschnikow, Anton; Mirth, Christen; Miura, Daisuke; Niewalda, Thomas; Otto, Nils; Paisios, Emmanouil; Pankratz, Michael J.; Petersen, Meike; Ramsperger, Noel; Randel, Nadine; Risse, Benjamin; Saumweber, Timo; Schlegel, Philipp; Schleyer, Michael; Soba, Peter; Sprecher, Simon G.; Tanimura, Teiichi; Thum, Andreas S.; Toshima, Naoko; Truman, Jim W.; Yarali, Ayse; Zlatic, MartaMapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva - because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour-taste associative learning, as well as light/dark-electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.
- Protein analysis and gene expression indicate differential vulnerability of Iberian fish species under a climate change scenarioPublication . Jesus, Tiago F.; Moreno, João M.; Repolho, Tiago; Athanasiadis, Alekos; Rosa, Rui; Almeida-Val, Vera M. F.; Coelho, Maria M.Current knowledge on the biological responses of freshwater fish under projected scenarios of climate change remains limited. Here, we examine differences in the protein configuration of two endemic Iberian freshwater fish species, Squalius carolitertii and the critically endangered S. torgalensis that inhabit in the Atlantic-type northern and in the Mediterranean-type southwestern regions, respectively. We performed protein structure modeling of fourteen genes linked to protein folding, energy metabolism, circadian rhythms and immune responses. Structural differences in proteins between the two species were found for HSC70, FKBP52, HIF1α and GPB1. For S. torgalensis, besides structural differences, we found higher thermostability for two proteins (HSP90 and GBP1), which can be advantageous in a warmer environment. Additionally, we investigated how these species might respond to projected scenarios of 3° climate change warming, acidification (ΔpH = -0.4), and their combined effects. Significant changes in gene expression were observed in response to all treatments, particularly under the combined warming and acidification. While S. carolitertii presented changes in gene expression for multiple proteins related to folding (hsp90aa1, hsc70, fkbp4 and stip1), only one such gene was altered in S. torgalensis (stip1). However, S. torgalensis showed a greater capacity for energy production under both the acidification and combined scenarios by increasing cs gene expression and maintaining ldha gene expression in muscle. Overall, these findings suggest that S. torgalensis is better prepared to cope with projected climate change. Worryingly, under the simulated scenarios, disturbances to circadian rhythm and immune system genes (cry1aa, per1a and gbp1) raise concerns for the persistence of both species, highlighting the need to consider multi-stressor effects when evaluating climate change impacts upon fish. This work also highlights that assessments of the potential of endangered freshwater species to cope with environmental change are crucial to help decision-makers adopt future conservation strategies.
- Involvement of the p62/NRF2 signal transduction pathway on erythrophagocytosisPublication . Santarino, Inês B.; Viegas, Michelle S.; Domingues, Neuza S.; Ribeiro, Ana M.; Soares, Miguel P.; Vieira, Otília V.Erythrophagocytosis, the phagocytic removal of damaged red blood cells (RBC), and subsequent phagolysosome biogenesis are important processes in iron/heme metabolism and homeostasis. Phagolysosome biogenesis implies the interaction of nascent phagosomes with endocytic compartments and also autophagy effectors. Here, we report that besides recruitment of microtubule-associated protein-1-light chain 3 (LC3), additional autophagy machinery such as sequestosome 1 (p62) is also acquired by single-membrane phagosomes at very early stages of the phagocytic process and that its acquisition is very important to the outcome of the process. In bone marrow-derived macrophages (BMDM) silenced for p62, RBC degradation is inhibited. P62, is also required for nuclear translocation and activation of the transcription factor Nuclear factor E2-related Factor 2 (NRF2) during erythrophagocytosis. Deletion of the Nrf2 allele reduces p62 expression and compromises RBC degradation. In conclusion, we reveal that erythrophagocytosis relies on an interplay between p62 and NRF2, potentially acting as protective mechanism to maintain reactive oxygen species at basal levels and preserve macrophage homeostasis.
- The Combined Effect of Oseltamivir and Favipiravir on Influenza A Virus EvolutionPublication . Ormond, Louise; Liu, Ping; Matuszewski, Sebastian; Renzette, Nicholas; Bank, Claudia; Zeldovich, Konstantin; Bolon, Daniel N.; Kowalik, Timothy F.; Finberg, Robert W.; Jensen, Jeffrey D.; Wang, Jennifer P.Influenza virus inflicts a heavy death toll annually and resistance to existing antiviral drugs has generated interest in the development of agents with novel mechanisms of action. Favipiravir is an antiviral drug that acts by increasing the genome-wide mutation rate of influenza A virus (IAV). Potential synergistic benefits of combining oseltamivir and favipiravir have been demonstrated in animal models of influenza, but the population-level effects of combining the drugs are unknown. In order to elucidate the underlying evolutionary processes at play, we performed genome-wide sequencing of IAV experimental populations subjected to serial passaging in vitro under a combined protocol of oseltamivir and favipiravir. We describe the interplay between mutation, selection, and genetic drift that ultimately culminates in population extinction. In particular, selective sweeps around oseltamivir resistance mutations reduce genome-wide variation while deleterious mutations hitchhike to fixation given the increased mutational load generated by favipiravir. This latter effect reduces viral fitness and accelerates extinction compared with IAV populations treated with favipiravir alone, but risks spreading both established and newly emerging mutations, including possible drug resistance mutations, if transmission occurs before the viral populations are eradicated.
- Glutamate receptor-like channels are essential for chemotaxis and reproduction in mossesPublication . Ortiz-Ramírez, Carlos; Michard, Erwan; Simon, Alexander A.; Damineli, Daniel S. C.; Hernández-Coronado, Marcela; Becker, Jörg D.; Feijó, José A.Glutamate receptors are well characterized channels that mediate cell-to-cell communication during neurotransmission in animals. Nevertheless, information regarding their functional role in organisms without nervous systems is still limited. In plants, Glutamate Receptor-like (GLR) genes have been implicated in defence against pathogens, reproduction, control of stomata aperture and light signal transduction(1-5). However, the numerous GLR genes present in angiosperm genomes (20 to 70)(6) has prevented the observation of strong phenotypes in loss-of-function mutants. Here, we show that in the moss Physcomitrella patens, a basal land plant, mutation of GLR genes cause sperm failure in targeting the female reproductive organs. In addition, we show that GLR genes encode non-selective Ca(2+) permeable channels that can regulate cytoplasmic Ca(2+) and are needed to induce the expression of a BELL1-like transcription factor essential for zygote development. Our work reveals novel functions for GLRs in sperm chemotaxis and transcriptional regulation. Sperm chemotaxis is essential for fertilization in both animals and early land plants like bryophytes and pteridophytes. Therefore, our results are suggestive that ionotropic glutamate receptors may have been conserved throughout plant evolution to mediate cell-to-cell communication during sexual reproduction.