Patterning and Morphogenesis
Permanent URI for this community
Our group is interested in several aspects of vertebrate embryonic development. The ultimate goal of our research is to understand the molecular mechanisms that translate patterning information into morphogenetic processes during formation of the vertebrate embryo. More recently, we have also become interested in the role that those processes played in the evolution of the vertebrate body plan. In general, most of our work uses the mouse as the model system, and our approaches have a main focus on in vivo functional analyses, but we are incorporating other model systems to our approaches, mostly as a consequence of the recent Evo-Devo twist in our research. Some of the active projects in the laboratory are outlined below.
Browse
Browsing Patterning and Morphogenesis by Subject "Body Patterning"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extensionPublication . Jurberg, Arnon Dias; Aires, Rita; Nóvoa, Ana; Rowland, Jennifer Elizabeth; Mallo, MoisésExtension of the vertebrate body results from the concerted activity of many signals in the posterior embryonic end. Among them, Wnt3a has been shown to play relevant roles in the regulation of axial progenitor activity, mesoderm formation and somitogenesis. However, its impact on axial growth remains to be fully understood. Using a transgenic approach in the mouse, we found that the effect of Wnt3a signaling varies depending on the target tissue. High levels of Wnt3a in the epiblast prevented formation of neural tissues, but did not impair axial progenitors from producing different mesodermal lineages. These mesodermal tissues maintained a remarkable degree of organization, even within a severely malformed embryo. However, from the cells that failed to take a neural fate, only those that left the epithelial layer of the epiblast activated a mesodermal program. The remaining tissue accumulated as a folded epithelium that kept some epiblast-like characteristics. Together with previously published observations, our results suggest a dose-dependent role for Wnt3a in regulating the balance between renewal and selection of differentiation fates of axial progenitors in the epiblast. In the paraxial mesoderm, appropriate regulation of Wnt/β-catenin signaling was required not only for somitogenesis, but also for providing proper anterior-posterior polarity to the somites. Both processes seem to rely on mechanisms with different requirements for feedback modulation of Wnt/β-catenin signaling, once segmentation occurred in the presence of high levels of Wnt3a in the presomitic mesoderm, but not after permanent expression of a constitutively active form of β-catenin. Together, our findings suggest that Wnt3a/β-catenin signaling plays sequential roles during posterior extension, which are strongly dependent on the target tissue. This provides an additional example of how much the functional output of signaling systems depends on the competence of the responding cells.
- Deconstructing the molecular mechanisms shaping the vertebrate body planPublication . Aires, Rita; Dias, André; Mallo, MoisésThe large display of body shapes and sizes observed among vertebrates ultimately represent variations of a common basic body plan. This likely results from the use of homologous developmental schemes, just differentially tinkered both in amplitude and timing by natural selection. In this review, we will revisit, discuss and combine old ideas with new concepts to update our view on how the vertebrate body is built. Recent advances, particularly at the molecular level, will guide our deconstruction of the individual developmental modules that sequentially produce head, neck, trunk and tail structures, and the transitions between them.
- Hox genes and regional patterning of the vertebrate body planPublication . Mallo, Moises; Wellik, Deneen M.; Deschamps, JacquelineSeveral decades have passed since the discovery of Hox genes in the fruit fly Drosophila melanogaster. Their unique ability to regulate morphologies along the anteroposterior (AP) axis (Lewis, 1978) earned them well-deserved attention as important regulators of embryonic development. Phenotypes due to loss- and gain-of-function mutations in mouse Hox genes have revealed that the spatio-temporally controlled expression of these genes is critical for the correct morphogenesis of embryonic axial structures. Here, we review recent novel insight into the modalities of Hox protein function in imparting specific identity to anatomical regions of the vertebral column, and in controlling the emergence of these tissues concomitantly with providing them with axial identity. The control of these functions must have been intimately linked to the shaping of the body plan during evolution.
- Reassessing the Role of Hox Genes during Vertebrate Development and EvolutionPublication . Mallo, MoisésSince their discovery Hox genes have been at the core of the established models explaining the development and evolution of the vertebrate body plan as well as its paired appendages. Recent work brought new light to their role in the patterning processes along the main body axis. These studies show that Hox genes do not control the basic layout of the vertebrate body plan but carry out region-specific patterning instructions loaded on the derivatives of axial progenitors by Hox-independent processes. Furthermore, the finding that Hox clusters are embedded in functional chromatin domains, which critically impacts their expression, has significantly altered our understanding of the mechanisms of Hox gene regulation. This new conceptual framework has broadened our understanding of both limb development and the evolution of vertebrate paired appendages.
- Switching Axial Progenitors from Producing Trunk to Tail Tissues in Vertebrate EmbryosPublication . Jurberg, Arnon Dias; Aires, Rita; Varela-Lasheras, Irma; Nóvoa, Ana; Mallo, MoisésThe vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.