I- Artigos
Permanent URI for this collection
Browse
Browsing I- Artigos by Subject "Animals"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Macrophage and epithelial cell H-ferritin expression regulates renal inflammationPublication . Bolisetty, Subhashini; Zarjou, Abolfazl; Hull, Travis D.; Traylor, Amie M.; Perianayagam, Anjana; Joseph, Reny; Kamal, Ahmed I.; Arosio, Paolo; Soares, Miguel P.; Jeney, Viktoria; Balla, Jozsef; George, James F.; Agarwal, AnupamInflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared with wild-type (FtH(+/+)) controls. However, tubular FtH deletion led to a marked increase in proinflammatory macrophages. Furthermore, injured kidneys from FtH(PT-/-) mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared with kidneys from FtH(+/+) and FtH(LysM-/-) mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscore the critical role of FtH in tubular-macrophage cross-talk during kidney injury.
- Red alert: labile heme is an alarminPublication . Soares, Miguel P; Bozza, Marcelo TAlarmins are a heterogeneous group of endogenous molecules that signal cellular damage when sensed extracellularly. Heme is an endogenous molecule that acts as a prosthetic group of hemoproteins, such as hemoglobin and myoglobin. When released from damaged red blood cells or muscle cells, oxidized hemoglobin and myoglobin release their prosthetic heme groups, respectively. This generates labile heme, which is sensed by pattern recognition receptors (PRR) expressed by innate immune cells and possibly regulatory T cells (TREG). The ensuing adaptive response, which alerts for the occurrence of red blood cell or muscle cell damage, regulates the pathologic outcome of hemolysis or rhabdomyolysis, respectively. In conclusion, we propose that labile heme is an alarmin.
- Regulation of Nuclear Factor κB (NF-κB) Transcriptional Activity via p65 Acetylation by the Chaperonin Containing TCP1 (CCT)Publication . Pejanovic, Nadja; Hochrainer, Karin; Liu, Tao; Aerne, Birgit L.; Soares, Miguel P.; Anrather, JosefThe NF-κB family member p65 is central to inflammation and immunity. The purpose of this study was to identify and characterize evolutionary conserved genes modulating p65 transcriptional activity. Using an RNAi screening approach, we identified chaperonin containing TCP1 subunit η (CCTη) as a regulator of Drosophila NF-κB proteins, Dorsal and Dorsal-related immunity factor (Dif). CCTη was also found to regulate NF-κB-driven transcription in mammalian cells, acting in a promoter-specific context, downstream of IκB kinase (IKK). CCTη knockdown repressed IκBα and CXCL2/MIP2 transcription during the early phase of NF-κB activation while impairing the termination of CCL5/RANTES and CXCL10/IP10 transcription. The latter effect was associated with increased DNA binding and reduced p65 acetylation, presumably by altering the activity of histone acetyltransferase CREB-binding protein (CBP). We identified p65 lysines (K) 122 and 123 as target residues mediating the CCTη-driven termination of NF-κB-dependent transcription. We propose that CCTη regulates NF-κB activity in a manner that resolves inflammation.
- The Microglial α7-Acetylcholine Nicotinic Receptor Is a Key Element in Promoting Neuroprotection by Inducing Heme Oxygenase-1viaNuclear Factor Erythroid-2-Related Factor 2Publication . Parada, Esther; Egea, Javier; Buendia, Izaskun; Negredo, Pilar; Cunha, Ana C.; Cardoso, Silvia; Soares, Miguel P.; López, Manuela G.We asked whether the neuroprotective effect of cholinergic microglial stimulation during an ischemic event acts via a mechanism involving the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) and/or the expression of its target cytoprotective gene, heme oxygenase-1 (HO-1). Specifically, the protective effect of the pharmacologic alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonist PNU282987 was analyzed in organotypic hippocampal cultures (OHCs) subjected to oxygen and glucose deprivation (OGD) in vitro as well as in photothrombotic stroke in vivo.