PD - Artigos
Permanent URI for this collection
Browse
Browsing PD - Artigos by Title
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tipPublication . Feijó, JA; Sainhas, J; Hackett, GR; Kunkel, JG; Hepler, PKUsing both the proton selective vibrating electrode to probe the extracellular currents and ratio-metric wide-field fluorescence microscopy with the indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran to image the intracellular pH, we have examined the distribution and activity of protons (Hf) associated with pollen tube growth. The intracellular images reveal that lily pollen tubes possess a constitutive alkaline band at the base of the clear zone and an acidic domain at the extreme apex. The extracellular observations, in close agreement, show a proton influx at the extreme apex of the pollen tube and an efflux in the region that corresponds to the position of the alkaline band. The ability to detect the intracellular pH gradient is strongly dependent on the concentration of exogenous buffers in the cytoplasm. Thus, even the indicator dye, if introduced at levels estimated to be of 1.0 mu M or greater, will dissipate the gradient, possibly through shuttle buffering. The apical acidic domain correlates closely with the process of growth, and thus may play a direct role, possibly in facilitating vesicle movement and exocytosis. The alkaline band correlates with the position of the reverse fountain streaming at the base of the clear zone, and may participate in the regulation of actin filament formation through the modulation of pH-sensitive actin binding proteins. These studies not only demonstrate that proton gradients exist, but that they may be intimately associated with polarized pollen tube growth.
- Nitric oxide is involved in growth regulation and re-orientation of pollen tubesPublication . Prado, AM; Porterfield, DM; Feijo, JANitric oxide (NO) controls diverse functions in many cells and organs of animals. It is also produced in plants and has a variety of effects, but little is known about their underlying mechanisms. In the present study, we have discovered a role for NO in the regulation of pollen tube growth, a fast tip-growing cellular system. Pollen tubes must be precisely oriented inside the anatomically complex female ovary in order to deliver sperm. We hypothesized that NO could play a role in this guidance and tested this hypothesis by challenging the growth of pollen tubes with an external NO point source. When a critical concentration was sensed, the growth rate was reduced and the growth axis underwent a subsequent sharp reorientation, after which normal growth was attained. This response was abrogated in the presence of the NO scavenger CPTIO and affected by drugs interfering in the cGMP signaling pathway. The sensitivity threshold of the response was significantly augmented by sildenafil citrate (SC), an inhibitor of cGMP-specific phosphodiesterases in animals. NO distribution inside pollen tubes was investigated using DAF2-DA and was shown to occur mostly in peroxisomes. Peroxisomes are normally excluded from the tip of pollen tubes and little if any NO is found in the cytosol of that region. Our data indicate that the rate and orientation of pollen tube growth is regulated by NO levels at the pollen tube tip and suggest that this NO function is mediated by cGMP.