BS - Artigos
Permanent URI for this collection
Browse
Recent Submissions
- Diet leaves a genetic signature in a keystone member of the gut microbiotaPublication . Dapa, Tanja; Ramiro, Ricardo Serotte; Pedro, Miguel Filipe; Gordo, Isabel; Xavier, Karina BivarSwitching from a low-fat and high-fiber diet to a Western-style high-fat and high-sugar diet causes microbiota imbalances that underlay many pathological conditions (i.e., dysbiosis). Although the effects of dietary changes on microbiota composition and functions are well documented, their impact in gut bacterial evolution remains unexplored. We followed the emergence of mutations in Bacteroides thetaiotaomicron, a prevalent fiber-degrading microbiota member, upon colonization of the murine gut under different dietary regimens. B. thetaiotaomicron evolved rapidly in the gut and Western-style diet selected for mutations that promote degradation of mucin-derived glycans. Periodic dietary changes caused fluctuations in the frequency of such mutations and were associated with metabolic shifts, resulting in the maintenance of higher intraspecies genetic diversity compared to constant dietary regimens. These results show that dietary changes leave a genetic signature in microbiome members and suggest that B. thetaiotaomicron genetic diversity could be a biomarker for dietary differences among individuals.
- Identification of Functional LsrB-Like Autoinducer-2 ReceptorsPublication . Pereira, C. S.; de Regt, A. K.; Brito, P. H.; Miller, S. T.; Xavier, K. B.Although a variety of bacterial species have been reported to use the interspecies communication signal autoinducer-2 (AI-2) to regulate multiple behaviors, the molecular mechanisms of AI-2 recognition and signal transduction remain poorly understood. To date, two types of AI-2 receptors have been identified: LuxP, present in Vibrio spp., and LsrB, first identified in Salmonella enterica serovar Typhimurium. In S. Typhimurium, LsrB is the ligand binding protein of a transport system that enables the internalization of AI-2. Here, using both sequence analysis and structure prediction, we establish a set of criteria for identifying functional AI-2 receptors. We test our predictions experimentally, assaying key species for their abilities to import AI-2 in vivo, and test their LsrB orthologs for AI-2 binding in vitro. Using these experimental approaches, we were able to identify AI-2 receptors in organisms belonging to phylogenetically distinct families such as the Enterobacteriaceae, Rhizobiaceae, and Bacillaceae. Phylogenetic analysis of LsrB orthologs indicates that this pattern could result from one single origin of the functional LsrB gene in a gammaproteobacterium, suggesting possible posterior independent events of lateral gene transfer to the Alphaproteobacteria and Firmicutes. Finally, we used mutagenesis to show that two AI-2-interacting residues are essential for the AI-2 binding ability. These two residues are conserved in the binding sites of all the functional AI-2 binding proteins but not in the non-AI-2-binding orthologs. Together, these results strongly support our ability to identify functional LsrB-type AI-2 receptors, an important step in investigations of this interspecies signal.
- The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiaePublication . Valente, Rita S.; Xavier, Karina BivarPectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae.
- Maintenance of Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait ScenariosPublication . Özkaya, Özhan; Xavier, Karina Bivar; Dionisio, Francisco; Balbontín, RobertoMicrobes often form densely populated communities, which favor competitive and cooperative interactions. Cooperation among bacteria often occurs through the production of metabolically costly molecules produced by certain individuals that become available to other neighboring individuals; such molecules are called public goods. This type of cooperation is susceptible to exploitation, since nonproducers of a public good can benefit from it while saving the cost of its production (cheating), gaining a fitness advantage over producers (cooperators). Thus, in mixed cultures, cheaters can increase in frequency in the population, relative to cooperators. Sometimes, and as predicted by simple game-theoretic arguments, such increases in the frequency of cheaters cause loss of the cooperative traits by exhaustion of the public goods, eventually leading to a collapse of the entire population. In other cases, however, both cooperators and cheaters remain in coexistence. This raises the question of how cooperation is maintained in microbial populations. Several strategies to prevent cheating have been studied in the context of a single trait and a unique environmental constraint. In this review, we describe current knowledge on the evolutionary stability of microbial cooperation and discuss recent discoveries describing the mechanisms operating in multiple-trait and multiple-constraint settings. We conclude with a consideration of the consequences of these complex interactions, and we briefly discuss the potential role of social interactions involving multiple traits and multiple environmental constraints in the evolution of specialization and division of labor in microbes.
- Specific Eco-evolutionary Contexts in the Mouse Gut Reveal Escherichia coli Metabolic VersatilityPublication . Barroso-Batista, João; Pedro, Miguel F; Sales-Dias, Joana; Pinto, Catarina J G; Thompson, Jessica A; Pereira, Helena; Demengeot, Jocelyne; Gordo, Isabel; Xavier, Karina BivarMembers of the gut microbiota are thought to experience strong competition for nutrients. However, how such competition shapes their evolutionary dynamics and depends on intra- and interspecies interactions is poorly understood. Here, we test the hypothesis that Escherichia coli evolution in the mouse gut is more predictable across hosts in the absence of interspecies competition than in the presence of other microbial species. In support, we observed that lrp, a gene encoding a global regulator of amino acid metabolism, was repeatedly selected in germ-free mice 2 weeks after mono-colonization by this bacterium. We established that this specific genetic adaptation increased E. coli's ability to compete for amino acids, and analysis of gut metabolites identified serine and threonine as the metabolites preferentially consumed by E. coli in the mono-colonized mouse gut. Preference for serine consumption was further supported by testing a set of mutants that showed loss of advantage of an lrp mutant impaired in serine metabolism in vitro and in vivo. Remarkably, the presence of a single additional member of the microbiota, Blautia coccoides, was sufficient to alter the gut metabolome and, consequently, the evolutionary path of E. coli. In this environment, the fitness advantage of the lrp mutant bacteria is lost, and mutations in genes involved in anaerobic respiration were selected instead, recapitulating the eco-evolutionary context from mice with a complex microbiota. Together, these results highlight the metabolic plasticity and evolutionary versatility of E. coli, tailored to the specific ecology it experiences in the gut.
- Synthesis of d-desthiobiotin-AI-2 as a novel chemical probe for autoinducer-2 quorum sensing receptorsPublication . Miranda, Vanessa; Torcato, Inês M; Xavier, Karina B; Ventura, M RitaIn processes regulated by quorum sensing (QS) bacteria respond to the concentration of autoinducers in the environment to engage in group behaviours. Autoinducer-2 (AI-2) is unique as it can foster interspecies communication. Currently, two AI-2 receptors are known, LuxP and LsrB, but bacteria lacking these receptors can also respond to AI-2. In this work, we present an efficient and reproducible synthesis of a novel chemical probe, d-desthiobiotin-AI-2. This probe binds both LuxP and LsrB receptors from different species of bacteria. Thus, this probe is able to bind receptors that recognise the two known biologically active forms of AI-2, presenting the plasticity essential for the identification of novel unknown AI-2 receptors. Moreover, a protocol to pull down receptors bound to d-desthiobiotin-AI-2 with anti-biotin antibodies has also been established. Altogether, this work highlights the potential of conjugating chemical signals to biotinylated derivatives to identify and tag signal receptors involved in quorum sensing or other chemical signalling processes.
- Synthesis and biological activity of a potent optically pure autoinducer-2 quorum sensing agonistPublication . Ascenso, Osvaldo S.; Torcato, Inês M.; Miguel, Ana Sofia; Marques, João C.; Xavier, Karina B.; Ventura, M. Rita; Maycock, Christopher D.Quorum sensing (QS) regulates population-dependent bacterial behaviours, such as toxin production, biofilm formation and virulence. Autoinducer-2 (AI-2) is to date the only signalling molecule known to foster inter-species bacterial communication across distantly related bacterial species. In this work, the synthesis of pure enantiomers of C4-propoxy-HPD and C4-ethoxy-HPD, known AI-2 analogues, has been developed. The optimised synthesis is efficient, reproducible and short. The (4S) enantiomer of C4-propoxy-HPD was the most active compound being approximately twice as efficient as (4S)-DPD and ten-times more potent than the (4R) enantiomer. Additionally, the specificity of this analogue to bacteria with LuxP receptors makes it a good candidate for clinical applications, because it is not susceptible to scavenging by LsrB-containing bacteria that degrade the natural AI-2. All in all, this study provides a new brief and effective synthesis of isomerically pure analogues for QS modulation that include the most active AI-2 agonist described so far.
- LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2Publication . Marques, João C.; Oh, Il Kyu; Ly, Daniel C.; Lamosa, Pedro; Ventura, M. Rita; Miller, Stephen T.; Xavier, Karina BivarThe quorum sensing signal autoinducer-2 (AI-2) regulates important bacterial behaviors, including biofilm formation and the production of virulence factors. Some bacteria, such as Escherichia coli, can quench the AI-2 signal produced by a variety of species present in the environment, and thus can influence AI-2-dependent bacterial behaviors. This process involves uptake of AI-2 via the Lsr transporter, followed by phosphorylation and consequent intracellular sequestration. Here we determine the metabolic fate of intracellular AI-2 by characterizing LsrF, the terminal protein in the Lsr AI-2 processing pathway. We identify the substrates of LsrF as 3-hydroxy-2,4-pentadione-5-phosphate (P-HPD, an isomer of AI-2-phosphate) and coenzyme A, determine the crystal structure of an LsrF catalytic mutant bound to P-HPD, and identify the reaction products. We show that LsrF catalyzes the transfer of an acetyl group from P-HPD to coenzyme A yielding dihydroxyacetone phosphate and acetyl-CoA, two key central metabolites. We further propose that LsrF, despite strong structural homology to aldolases, acts as a thiolase, an activity previously undescribed for this family of enzymes. With this work, we have fully characterized the biological pathway for AI-2 processing in E. coli, a pathway that can be used to quench AI-2 and control quorum-sensing-regulated bacterial behaviors.
- Bacterial Call to Arms for Warfare at the Infection SitePublication . Cabral, Vitor; Xavier, Karina BivarBacterial sensing is important for perceiving environmental cues and activating responses. In this issue of Cell Host & Microbe, Hertzog et al. (2018) show that group A Streptococcus can couple the ability to respond to host cues with autoinduction of a quorum sensing system, leading to killing of bacterial competitors.
- Quorum sensing regulation in Erwinia carotovora affects development of Drosophila melanogaster infected larvaePublication . Vieira, Filipe J. D.; P, Nadal-Jimenez; Teixeira, Luis; Xavier, Karina BivarMulti-host bacteria must rapidly adapt to drastic environmental changes, relying on integration of multiple stimuli for an optimal genetic response. Erwinia spp. are phytopathogens that cause soft-rot disease in plants. Erwinia carotovora Ecc15 is used as a model for bacterial oral-route infection in Drosophila melanogaster as it harbors a gene, the Erwinia virulence factor (Evf), which has been previously shown to be a major determinant for infection of D. melanogaster gut. However, the factors involved in regulation of evf expression are poorly understood. We investigated whether evf could be controlled by quorum sensing since, in the Erwinia genus, quorum sensing regulates pectolytic enzymes, the major virulence factors needed to infect plants. Here, we show that transcription of evf is positively regulated by quorum sensing in Ecc15 via the acyl-homoserine lactone (AHL) signal synthase ExpI, and the AHL receptors ExpR1 and ExpR2. Moreover, we demonstrate that the GacS/A two-component system is partially required for evf expression. We also show that the load of Ecc15 in the gut depends upon the quorum sensing-mediated regulation of evf. Furthermore, we demonstrate that larvae infected with Ecc15 suffer a developmental delay as a direct consequence of the regulation of evf via quorum sensing. Overall, our results show that Ecc15 relies on quorum sensing to control production of both pectolytic enzymes and Evf. This regulation influences the interaction of Ecc15 with its two known hosts, indicating that quorum sensing and GacS/A signaling systems may impact bacterial dissemination via insect vectors that feed on rotting plants.