Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

The quantitative architecture of centromeric chromatin
Publication . Bodor, Dani L; Mata, João F; Sergeev, Mikhail; David, Ana Filipa; Salimian, Kevan J; Panchenko, Tanya; Cleveland, Don W; Black, Ben E; Shah, Jagesh V; Jansen, Lars ET
The centromere, responsible for chromosome segregation during mitosis, is epigenetically defined by CENP-A containing chromatin. The amount of centromeric CENP-A has direct implications for both the architecture and epigenetic inheritance of centromeres. Using complementary strategies, we determined that typical human centromeres contain ∼400 molecules of CENP-A, which is controlled by a mass-action mechanism. This number, despite representing only ∼4% of all centromeric nucleosomes, forms a ∼50-fold enrichment to the overall genome. In addition, although pre-assembled CENP-A is randomly segregated during cell division, this amount of CENP-A is sufficient to prevent stochastic loss of centromere function and identity. Finally, we produced a statistical map of CENP-A occupancy at a human neocentromere and identified nucleosome positions that feature CENP-A in a majority of cells. In summary, we present a quantitative view of the centromere that provides a mechanistic framework for both robust epigenetic inheritance of centromeres and the paucity of neocentromere formation.DOI: http://dx.doi.org/10.7554/eLife.02137.001.
A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly
Publication . Stankovic, Ana; Guo, Lucie Y.; Mata, João F.; Bodor, Dani L.; Cao, Xing-Jun; Bailey, Aaron O.; Shabanowitz, Jeffrey; Hunt, Donald F.; Garcia, Benjamin A.; Black, Ben E.; Jansen, Lars E.T.
Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell-cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, that mediated specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A.
Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes
Publication . Bodor, D. L.; Valente, L. P.; Mata, J. F.; Black, B. E.; Jansen, L. E. T.
Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle-restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle-restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.
Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant
Publication . Earnshaw, W. C.; Allshire, R. C.; Black, B. E.; Bloom, K.; Brinkley, B. R.; Brown, W.; Cheeseman, I. M.; Choo, K. H. A.; Copenhaver, G. P.; DeLuca, J. G.; Desai, A.; Diekmann, S.; Erhardt, S.; Fitzgerald-Hayes, M.; Foltz, D.; Fukagawa, T.; Gassmann, R.; Gerlich, D. W.; Glover, D. M.; Gorbsky, G. J.; Harrison, S. C.; Heun, P.; Hirota, T.; Jansen, L. E. T.; Karpen, G.; Kops, G. J. P. L.; Lampson, M. A.; Lens, S. M.; Losada, A.; Luger, K.; Maiato, H.; Maddox, P. S.; Margolis, R. L.; Masumoto, H.; McAinsh, A. D.; Mellone, B. G.; Meraldi, P.; Musacchio, A.; Oegema, K.; O’Neill, R. J.; Salmon, E. D.; Scott, K. C.; Straight, A. F.; Stukenberg, P. T.; Sullivan, B. A.; Sullivan, K. F.; Sunkel, C. E.; Swedlow, J. R.; Walczak, C. E.; Warburton, P. E.; Westermann, S.; Willard, H. F.; Wordeman, L.; Yanagida, M.; Yen, T. J.; Yoda, K.; Cleveland, D. W.
The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

PTDC/BIA-BCM/100557/2008

ID