Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance
Publication . Remy, Estelle; Niño-González, María; Godinho, Cláudia P.; Cabrito, Tânia R.; Teixeira, Miguel C.; Sá-Correia, Isabel; Duque, Paula
Soil contamination is a major hindrance for plant growth and development. The lack of effective strategies to remove chemicals released into the environment has raised the need to increase plant resilience to soil pollutants. Here, we investigated the ability of two Saccharomyces cerevisiae plasma-membrane transporters, the Major Facilitator Superfamily (MFS) member Tpo1p and the ATP-Binding Cassette (ABC) protein Pdr5p, to confer Multiple Drug Resistance (MDR) in Arabidopsis thaliana. Transgenic plants expressing either of the yeast transporters were undistinguishable from the wild type under control conditions, but displayed tolerance when challenged with the herbicides 2,4-D and barban. Plants expressing ScTPO1 were also more resistant to the herbicides alachlor and metolachlor as well as to the fungicide mancozeb and the Co(2+), Cu(2+), Ni(2+), Al(3+) and Cd(2+) cations, while ScPDR5-expressing plants exhibited tolerance to cycloheximide. Yeast mutants lacking Tpo1p or Pdr5p showed increased sensitivity to most of the agents tested in plants. Our results demonstrate that the S. cerevisiae Tpo1p and Pdr5p transporters are able to mediate resistance to a broad range of compounds of agricultural interest in yeast as well as in Arabidopsis, underscoring their potential in future biotechnological applications.
The regulator LdhR and the d-lactate dehydrogenase LdhA of Burkholderia multivorans play a role in carbon overflow and in planktonic cellular aggregates formation
Publication . Silva, Inês N.; Ramires, Marcelo J.; Azevedo, Lisa A.; Guerreiro, Ana R.; Tavares, Andreia C.; Becker, Jörg D.; Moreira, Leonilde M.
LysR-type transcriptional regulators (LTTR) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several bacteria, few have been characterized in Burkholderia Here, we showed that gene ldhR of B. multivorans encoding a LTTR is co-transcribed with ldhA encoding a d-lactate dehydrogenase, and evaluate their implication in virulence traits like exopolysaccharide (EPS) synthesis and biofilm formation. Comparison of wild-type (WT) and its isogenic ΔldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cells' viability in the presence of LdhR. Loss of viability in WT cells was caused by intracellular acidification as consequence of cumulative organic acids secretion including d-lactate, this last one absent from the ΔldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1000 μm after 24 hours in liquid cultures; in contrast to ΔldhR mutant aggregates that never grew more than 60 μm. Overexpression of d-lactate dehydrogenase LdhA in the ΔldhR mutant partially restored formed aggregates size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 out of 74. As CF patients' lung environment is microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adaptation to this environment.IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several microorganisms. Among them are the Burkholderia cepacia complex bacteria which cause progressive deterioration of lung function and, in some patients, might develop into fatal necrotizing pneumoniae with bacteremia, known as "cepacia syndrome". Burkholderia pathogenesis is multifactorial since they express several virulence factors, form biofilms, and are highly resistant to antimicrobial compounds, making their eradication from the CF patients' airways very difficult. As Burkholderia is commonly found in the CF lungs in the form of cell aggregates and biofilms, the need to investigate the mechanisms of cellular aggregation is obvious. In this study we demonstrate the importance of a d-lactate dehydrogenase and a regulator, in regulating carbon overflow, cellular aggregates and surface-attached biofilm formation. This not only enhances our understanding of Burkholderia pathogenesis, but can also lead to the development of drugs against these proteins to circumvent biofilm formation.
Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae
Publication . Gil, Fátima N.; Gonçalves, Alina C.; Becker, Jörg D.; Viegas, Cristina A.
Accidental spills and misuse of pesticides may lead to current and/or legacy environmental contamination and may pose concerns regarding possible risks towards non-target microbes and higher eukaryotes in ecosystems. The present study was aimed at comparing transcriptomic responses to effects of sub-lethal levels of six environmentally relevant pesticide active substances in the Saccharomyces cerevisiae eukaryotic model. The insecticide carbofuran, the fungicide pyrimethanil and the herbicides alachlor, S-metolachlor, diuron and methyl(4-chloro-2-methylphenoxy)acetate were studied. Some are currently used agricultural pesticides, while others are under restricted utilization or banned in Europe and/or North America albeit being used in other geographical locations. In the present work transcriptional profiles representing genome-wide responses in a standardized yeast population upon 2 h of exposure to concentrations of each compound exerting equivalent toxic effects, i.e., inhibition of growth by 20% relative to the untreated control cells, were examined. Hierarchical clustering and Venn analyses of the datasets of differentially expressed genes pointed out transcriptional patterns distinguishable between the six active substances. Functional enrichment analyses allowed predicting mechanisms of pesticide toxicity and response to pesticide stress in the yeast model. In general, variations in transcript numbers of selected genes assessed by Real-Time quantitative reverse transcription polymerase chain reaction confirmed microarray data and correlated well with growth inhibitory effects. A possible biological relevance of mechanistic predictions arising from these comparative transcriptomic analyses is discussed in the context of better understanding potential modes of action and adverse side-effects of pesticides.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876

Funding Award Number

UID/BIO/04565/2013

ID