Repository logo
 
Loading...
Project Logo
Research Project

Towards the establishment of a permanent European Virtual Institute dedicated to Malaria Research (EVIMalaR).

Funder

Organizational Unit

Authors

Publications

Modeling Malaria Infection and Immunity against Variant Surface Antigens in Príncipe Island, West Africa
Publication . Trovoada, Maria Jesus; Gonçalves, Lígia A.; Marinho, Cláudio R. F.; Turner, Louise; Hviid, Lars; Penha-Gonçalves, Carlos; Gomes, M. Gabriela M.
After remarkable success of vector control campaigns worldwide, concerns about loss of immunity against Plasmodium falciparum due to lack of exposure to the parasite are relevant since an increase of severe cases in less immune individuals is expected. We present a mathematical model to investigate the impact of reducing exposure to the parasite on the immune repertoire against P. falciparum erythrocyte membrane protein 1 (PfEMP1) variants. The model was parameterized with data from Príncipe Island, West Africa, and applied to simulate two alternative transmission scenarios: one where control measures are continued to eventually drive the system to elimination; and another where the effort is interrupted after 6 years of its initiation and the system returns to the initial transmission potential. Population dynamics of parasite prevalence predict that in a few years infection levels return to the pre-control values, while the re-acquisition of the immune repertoire against PfEMP1 is slower, creating a window for increased severity. The model illustrates the consequences of loss of immune repertoire against PfEMP1 in a given setting and can be applied to other regions where similar data may be available.
Highly dynamic host actin reorganization around developing Plasmodium inside hepatocytes
Publication . Gomes-Santos, Carina S S; Itoe, Maurice A; Afonso, Cristina; Henriques, Ricardo; Gardner, Rui; Sepúlveda, Nuno; Simões, Pedro D; Raquel, Helena; Almeida, António Paulo; Moita, Luis F; Frischknecht, Friedrich; Mota, Maria M
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

European Commission

Funding programme

FP7

Funding Award Number

242095

ID