Loading...
Research Project
Nucleosome Structure & Function across Biological Scales and Biological Function
Funder
Authors
Publications
Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant
Publication . Earnshaw, W. C.; Allshire, R. C.; Black, B. E.; Bloom, K.; Brinkley, B. R.; Brown, W.; Cheeseman, I. M.; Choo, K. H. A.; Copenhaver, G. P.; DeLuca, J. G.; Desai, A.; Diekmann, S.; Erhardt, S.; Fitzgerald-Hayes, M.; Foltz, D.; Fukagawa, T.; Gassmann, R.; Gerlich, D. W.; Glover, D. M.; Gorbsky, G. J.; Harrison, S. C.; Heun, P.; Hirota, T.; Jansen, L. E. T.; Karpen, G.; Kops, G. J. P. L.; Lampson, M. A.; Lens, S. M.; Losada, A.; Luger, K.; Maiato, H.; Maddox, P. S.; Margolis, R. L.; Masumoto, H.; McAinsh, A. D.; Mellone, B. G.; Meraldi, P.; Musacchio, A.; Oegema, K.; O’Neill, R. J.; Salmon, E. D.; Scott, K. C.; Straight, A. F.; Stukenberg, P. T.; Sullivan, B. A.; Sullivan, K. F.; Sunkel, C. E.; Swedlow, J. R.; Walczak, C. E.; Warburton, P. E.; Westermann, S.; Willard, H. F.; Wordeman, L.; Yanagida, M.; Yen, T. J.; Yoda, K.; Cleveland, D. W.
The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.
Dynamics of Histone H3 Deposition In Vivo Reveal a Nucleosome Gap-Filling Mechanism for H3.3 to Maintain Chromatin Integrity
Publication . Ray-Gallet, Dominique; Woolfe, Adam; Vassias, Isabelle; Pellentz, Céline; Lacoste, Nicolas; Puri, Aastha; Schultz, David C.; Pchelintsev, Nikolay A.; Adams, Peter D.; Jansen, Lars E.T.; Almouzni, Geneviève
Establishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.1 incorporation via CAF-1 enables an alternative H3.3 deposition at replication sites via HIRA. Conversely, the H3.3 incorporation throughout the cell cycle via HIRA cannot be replaced by H3.1. ChIP-seq analyses reveal correlation between HIRA-dependent H3.3 accumulation and RNA pol II at transcription sites and specific regulatory elements, further supported by their biochemical association. The HIRA complex shows unique DNA binding properties, and depletion of HIRA increases DNA sensitivity to nucleases. We propose that protective nucleosome gap filling of naked DNA by HIRA leads to a broad distribution of H3.3, and HIRA association with Pol II ensures local H3.3 enrichment at specific sites. We discuss the importance of this H3.3 deposition as a salvage pathway to maintain chromatin integrity.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
European Commission
Funding programme
FP7
Funding Award Number
238176