Repository logo
 
Loading...
Project Logo
Research Project

CD26/DPP4 in Fatty Liver Disease progression: inflammation impinges on dysmetabolism.

Authors

Publications

How Inflammation Impinges on NAFLD: A Role for Kupffer Cells
Publication . Duarte, Nádia; Coelho, Inês C.; Patarrão, Rita S.; Almeida, Joana I.; Penha-Gonçalves, Carlos; Macedo, M. Paula
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most prevalent cause of liver disease worldwide and afflicts adults and children as currently associated with obesity and insulin resistance. Even though lately some advances have been made to elucidate the mechanism and causes of the disease much remains unknown about NAFLD. The aim of this paper is to discuss the present knowledge regarding the pathogenesis of the disease aiming at the initial steps of NAFLD development, when inflammation impinges on fat liver deposition. At this stage, the Kupffer cells attain a prominent role. This knowledge becomes subsequently relevant for the development of future diagnostic, prevention, and therapeutic options for the management of NAFLD.
Dipeptidyl Peptidase-4 Is a Pro-Recovery Mediator During Acute Hepatotoxic Damage and Mirrors Severe Shifts in Kupffer Cells
Publication . Duarte, Nádia; Coelho, Inês; Holovanchuk, Denys; Inês Almeida, Joana; Penha-Gonçalves, Carlos; Paula Macedo, Maria
Dipeptidyl peptidase-4 (DPP-4 or clusters of differentiation [CD]26) is a multifunctional molecule with established roles in metabolism. Pharmacologic inhibition of DPP-4 is widely used to improve glycemic control through regulation of the incretin effect. Colaterally, CD26/DPP-4 inhibition appears to be beneficial in many inflammatory conditions, namely in delaying progression of liver pathology. Nevertheless, the exact implications of CD26/DPP-4 enzymatic activity in liver dysfunction remain unclear. In this work, we investigated the involvement of CD26/DPP-4 in experimental mouse models of induced hepatocyte damage that severely impact Kupffer cell (KC) populations. Liver dysfunction was evaluated in CD26 knockout (KO) and B6 wild-type mice during acute liver damage induced by acetaminophen, chronic liver damage induced by carbon tetrachloride, and KC-depleting treatment with clodronate-loaded liposomes. We found that necrosis resolution after hepatotoxic injury was delayed in CD26KO mice and in B6 mice treated with the CD26/DPP-4 inhibitor sitagliptin, suggesting that DPP-4 enzymatic activity plays a role in recovering from acute liver damage. Interestingly, the severe KC population reduction in acute and chronic liver injury was concomitant with increased CD26/DPP-4 serum levels. Remarkably, both chronic liver damage and noninflammatory depletion of KCs by clodronate liposomes were marked by oscillation in CD26/DPP-4 serum activity that mirrored the kinetics of liver KC depletion/recovery. Conclusion:CD26/DPP-4 enzymatic activity contributes to necrosis resolution during recovery from acute liver injury. Serum CD26/DPP-4 is elevated when severe perturbations are imposed on KC populations, regardless of patent liver damage. We propose that serum CD26/DPP-4 is a potential systemic surrogate marker of severe impairments in the KC population imposed by clinical and subclinical liver conditions.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

PTDC/BIM-MET/0486/2012

ID