Name: | Description: | Size: | Format: | |
---|---|---|---|---|
artigo principal | 2.58 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Symbiotic interactions between microbes and their multicellular hosts have
manifold impacts on molecular, cellular and organismal biology. To identify
candidate bacterial genes involved in maintaining endosymbiotic associations
with insect hosts, we analyzed genome-wide patterns of gene expression in the
alpha-proteobacteria Wolbachia pipientis across the life cycle of Drosophila
melanogaster using public data from the modENCODE project that was generated in
a Wolbachia-infected version of the ISO1 reference strain. We find that the
majority of Wolbachia genes are expressed at detectable levels in D.
melanogaster across the entire life cycle, but that only 7.8% of 1195 Wolbachia
genes exhibit robust stage- or sex-specific expression differences when studied
in the "holo-organism" context. Wolbachia genes that are differentially
expressed during development are typically up-regulated after D. melanogaster
embryogenesis, and include many bacterial membrane, secretion system and
ankyrin-repeat containing proteins. Sex-biased genes are often organised as
small operons of uncharacterised genes and are mainly up-regulated in adult
males D. melanogaster in an age-dependent manner suggesting a potential role in
cytoplasmic incompatibility. Our results indicate that large changes in
Wolbachia gene expression across the Drosophila life-cycle are relatively rare
when assayed across all host tissues, but that candidate genes to understand
host-microbe interaction in facultative endosymbionts can be successfully
identified using holo-organism expression profiling. Our work also shows that
mining public gene expression data in D. melanogaster provides a rich set of
resources to probe the functional basis of the Wolbachia-Drosophila symbiosis
and annotate the transcriptional outputs of the Wolbachia genome.
Description
Keywords
Wolbachia Drosophila symbiosis development cytoplasmic incompatibility
Citation
Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle Florence Gutzwiller, Catarina R. Carmo, Danny E. Miller, Danny W. Rice, Irene L. G. Newton, R. Scott Hawley, Luis Teixeira, and Casey M. Bergman G3 December 2015 5:2843-2856; Early Online October 23, 2015, doi:10.1534/g3.115.021931
Publisher
Genetics Society of America