Browsing by Issue Date, starting with "2017-01"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- CREM variant rs17583959 conferred susceptibility to T1D risk in the Tunisian familiesPublication . Zouidi, Ferjani; Bouzid, D.; Fourati, H.; Fakhfakh, R.; Kammoun, T.; Hachicha, M.; Penha-Gonçalves, C.; Masmoudi, H.Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the destruction of insulin-producing pancreatic β-cells by autoreactive T cells. Studies in animal models, such as the non-obese diabetic (NOD) mouse reveal that this disease is under the control of several genes that encode molecules implicated in regulation of transcription factors and in T cell activation. In order to underline the role of the genes involved in this regulation pathways, we investigated, using the Sequenom MassARRAY platform, 13 single-nucleotide polymorphisms (SNPs) belonging to CREM, IRF5, STAT4, and STAT5a/b genes in 59 T1D Tunisian families. In the current study, we identified an association with rs17583959 (allele G; Z score=2.27; p=0.02; Genotype GG: score=1.96; p=0.04) of CREM gene. In LD analysis a strong LD between the 3 CREM variants (Block 1) was detected; rs2384352 was in complete LD with rs1148247. When haplotypes were constructed between CREM polymorphisms (rs1148247, rs17583959, rs2384352), AGA haplotype (H2) was significantly over-transmitted from parents to affected offspring (Z score=2.988; P=0.002) and may confer a risk for T1D disease. Whereas, AAG haplotype (H5) (Z score=-2.000; p=0.045) was less transmitted than expected to affected children suggesting its protective effect against T1D pathology. No significant association in IRF5, STAT4, and STAT5a/b genes were observed. In conclusion, this study shows an eventually involvement of CREM gene in the development of T1D pathology in Tunisian families. These facts are consistent with a major role for transcription factor genes involved in the immune pathways in the control of autoimmunity. Further researches of association and functional analysis across populations are needed to confirm these findings.
- Pre-mRNA splicing repression triggers abiotic stress signaling in plantsPublication . Ling, Yu; Alshareef, Sahar; Butt, Haroon; Lozano-Juste, Jorge; Li, Lixin; Galal, Aya A.; Moustafa, Ahmed; Momin, Afaque A.; Tashkandi, Manal; Richardson, Dale N.; Fujii, Hiroaki; Arold, Stefan; Rodriguez, Pedro L.; Duque, Paula; Mahfouz, Magdy M.Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A::LUC and MAPKKK18::uidA in Arabidopsis thaliana and mimics the effects of ABA on stomatal aperture. Genome-wide analysis of AS by RNA-seq revealed that PB perturbs the splicing machinery and leads to a striking increase in intron retention and a reduction in other forms of AS. Interestingly, PB treatment activates the ABA signaling pathway by inhibiting the splicing of clade A PP2C phosphatases while still maintaining to some extent the splicing of ABA-activated SnRK2 kinases. Taken together, our data establish PB as an inhibitor and modulator of splicing and a mimic of abiotic stress signals in plants. Thus, PB reveals the molecular underpinnings of the interplay between stress responses, ABA signaling and post-transcriptional regulation in plants.
- Laser Capture Microdissection Protocol for Xylem Tissues of Woody PlantsPublication . Blokhina, Olga; Valerio, Concetta; Sokołowska, Katarzyna; Zhao, Lei; Kärkönen, Anna; Niittylä, Totte; Fagerstedt, KurtLaser capture microdissection (LCM) enables precise dissection and collection of individual cell types from complex tissues. When applied to plant cells, and especially to woody tissues, LCM requires extensive optimization to overcome such factors as rigid cell walls, large central vacuoles, intercellular spaces, and technical issues with thickness and flatness of the sections. Here we present an optimized protocol for the laser-assisted microdissection of developing xylem from mature trees: a gymnosperm (Norway spruce, Picea abies) and an angiosperm (aspen, Populus tremula) tree. Different cell types of spruce and aspen wood (i.e., ray cells, tracheary elements, and fibers) were successfully microdissected from tangential, cross and radial cryosections of the current year's growth ring. Two approaches were applied to achieve satisfactory flatness and anatomical integrity of the spruce and aspen specimens. The commonly used membrane slides were ineffective as a mounting surface for the wood cryosections. Instead, in the present protocol we use glass slides, and introduce a glass slide sandwich assembly for the preparation of aspen sections. To ascertain that not only the anatomical integrity of the plant tissue, but also the molecular features were not compromised during the whole LCM procedure, good quality total RNA could be extracted from the microdissected cells. This showed the efficiency of the protocol and established that our methodology can be integrated in transcriptome analyses to elucidate cell-specific molecular events regulating wood formation in trees.
- Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behaviorPublication . Wircer, Einav; Blechman, Janna; Borodovsky, Nataliya; Tsoory, Michael; Nunes, Ana Rita; Oliveira, Rui F; Levkowitz, GilProper response to stress and social stimuli depends on orchestrated development of hypothalamic neuronal circuits. Here we address the effects of the developmental transcription factor orthopedia (Otp) on hypothalamic development and function. We show that developmental mutations in the zebrafish paralogous gene otpa but not otpb affect both stress response and social preference. These behavioral phenotypes were associated with developmental alterations in oxytocinergic (OXT) neurons. Thus, otpa and otpb differentially regulate neuropeptide switching in a newly identified subset of OXT neurons that co-express the corticotropin-releasing hormone (CRH). Single-cell analysis revealed that these neurons project mostly to the hindbrain and spinal cord. Ablation of this neuronal subset specifically reduced adult social preference without affecting stress behavior, thereby uncoupling the contribution of a specific OXT cluster to social behavior from the general otpa(-/-) deficits. Our findings reveal a new role for Otp in controlling developmental neuropeptide balance in a discrete OXT circuit whose disrupted development affects social behavior.
- A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A AssemblyPublication . Stankovic, Ana; Guo, Lucie Y.; Mata, João F.; Bodor, Dani L.; Cao, Xing-Jun; Bailey, Aaron O.; Shabanowitz, Jeffrey; Hunt, Donald F.; Garcia, Benjamin A.; Black, Ben E.; Jansen, Lars E.T.Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell-cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, that mediated specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A.