CCR - Artigos
Permanent URI for this collection
Browse
Browsing CCR - Artigos by Subject "Animals, Genetically Modified"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Differential regulation of transition zone and centriole proteins contributes to ciliary base diversityPublication . Jana, Swadhin Chandra; Mendonça, Susana; Machado, Pedro; Werner, Sascha; Rocha, Jaqueline; Pereira, António; Maiato, Helder; Bettencourt-Dias, MónicaCilia are evolutionarily conserved structures with many sensory and motility-related functions. The ciliary base, composed of the basal body and the transition zone, is critical for cilia assembly and function, but its contribution to cilia diversity remains unknown. Hence, we generated a high-resolution structural and biochemical atlas of the ciliary base of four functionally distinct neuronal and sperm cilia types within an organism, Drosophila melanogaster. We uncovered a common scaffold and diverse structures associated with different localization of 15 evolutionarily conserved components. Furthermore, CEP290 (also known as NPHP6) is involved in the formation of highly diverse transition zone links. In addition, the cartwheel components SAS6 and ANA2 (also known as STIL) have an underappreciated role in basal body elongation, which depends on BLD10 (also known as CEP135). The differential expression of these cartwheel components contributes to diversity in basal body length. Our results offer a plausible explanation to how mutations in conserved ciliary base components lead to tissue-specific diseases.
- Revisiting the role of the mother centriole in centriole biogenesisPublication . Rodrigues-Martins, A; Riparbelli, M; Callaini, G; Glover, D M; Bettencourt-Dias, MCentrioles duplicate once in each cell division cycle through so-called templated or canonical duplication. SAK, also called PLK4 (SAK/PLK4), a kinase implicated in tumor development, is an upstream regulator of canonical biogenesis necessary for centriole formation. We found that overexpression of SAK/PLK4 could induce amplification of centrioles in Drosophila embryos and their de novo formation in unfertilized eggs. Both processes required the activity of DSAS-6 and DSAS-4, two molecules required for canonical duplication. Thus, centriole biogenesis is a template-free self-assembly process triggered and regulated by molecules that ordinarily associate with the existing centriole. The mother centriole is not a bona fide template but a platform for a set of regulatory molecules that catalyzes and regulates daughter centriole assembly.