DG - Artigos em revistas científicas
Permanent URI for this collection
Browse
Recent Submissions
- Genetics of Malaria Inflammatory Responses: A Pathogenesis PerspectivePublication . Penha-Gonçalves, CarlosDespite significant progress in combating malaria in recent years the burden of severe disease and death due to Plasmodium infections remains a global public health concern. Only a fraction of infected people develops severe clinical syndromes motivating a longstanding search for genetic determinants of malaria severity. Strong genetic effects have been repeatedly ascribed to mutations and allelic variants of proteins expressed in red blood cells but the role of inflammatory response genes in disease pathogenesis has been difficult to discern. We revisited genetic evidence provided by inflammatory response genes that have been repeatedly associated to malaria, namely TNF, NOS2, IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants having opposing roles in the development of distinct malaria clinical outcomes and unveiled diverse levels of genetic heterogeneity that shaped the complex association landscape of inflammatory response genes with malaria. However, scrutinizing genetic effects of individual variants corroborates a pathogenesis model where pro-inflammatory genetic variants acting in early infection stages contribute to resolve infection but at later stages confer increased vulnerability to severe organ dysfunction driven by tissue inflammation. Human genetics studies are an invaluable tool to find genes and molecular pathways involved in the inflammatory response to malaria but their precise roles in disease pathogenesis are still unexploited. Genome editing in malaria experimental models and novel genotyping-by-sequencing techniques are promising approaches to delineate the relevance of inflammatory response gene variants in the natural history of infection thereby will offer new rational angles on adjuvant therapeutics for prevention and clinical management of severe malaria.
- Brain Endothelium: The "Innate Immunity Response Hypothesis" in Cerebral Malaria PathogenesisPublication . Pais, Teresa F; Penha-Gonçalves, CarlosCerebral malaria (CM) is a life-threatening neurological syndrome caused by Plasmodium falciparum infection afflicting mainly children in Africa. Current pathogenesis models implicate parasite and host-derived factors in impairing brain vascular endothelium (BVE) integrity. Sequestration of Plasmodium-infected red blood cells (iRBCs) in brain microvessels is a hallmark of CM pathology. However, the precise mechanisms driving loss of blood-brain barrier (BBB) function with consequent brain injury are still unsettled and it is plausible that distinct pathophysiology trajectories are involved. Studies in humans and in the mouse model of CM indicate that inflammatory reactions intertwined with microcirculatory and coagulation disturbances induce alterations in vascular permeability and impair BBB integrity. Yet, the role of BVE as initiator of immune responses against parasite molecules and iRBCs is largely unexplored. Brain endothelial cells express pattern recognition receptors (PRR) and are privileged sensors of blood-borne infections. Here, we focus on the hypothesis that innate responses initiated by BVE and subsequent interactions with immune cells are critical to trigger local effector immune functions and induce BBB damage. Uncovering mechanisms of BVE involvement in sensing Plasmodium infection, recruiting of immune cells and directing immune effector functions could reveal pharmacological targets to promote BBB protection with potential applications in CM clinical management.
- Dipeptidyl Peptidase-4 Is a Pro-Recovery Mediator During Acute Hepatotoxic Damage and Mirrors Severe Shifts in Kupffer CellsPublication . Duarte, Nádia; Coelho, Inês; Holovanchuk, Denys; Inês Almeida, Joana; Penha-Gonçalves, Carlos; Paula Macedo, MariaDipeptidyl peptidase-4 (DPP-4 or clusters of differentiation [CD]26) is a multifunctional molecule with established roles in metabolism. Pharmacologic inhibition of DPP-4 is widely used to improve glycemic control through regulation of the incretin effect. Colaterally, CD26/DPP-4 inhibition appears to be beneficial in many inflammatory conditions, namely in delaying progression of liver pathology. Nevertheless, the exact implications of CD26/DPP-4 enzymatic activity in liver dysfunction remain unclear. In this work, we investigated the involvement of CD26/DPP-4 in experimental mouse models of induced hepatocyte damage that severely impact Kupffer cell (KC) populations. Liver dysfunction was evaluated in CD26 knockout (KO) and B6 wild-type mice during acute liver damage induced by acetaminophen, chronic liver damage induced by carbon tetrachloride, and KC-depleting treatment with clodronate-loaded liposomes. We found that necrosis resolution after hepatotoxic injury was delayed in CD26KO mice and in B6 mice treated with the CD26/DPP-4 inhibitor sitagliptin, suggesting that DPP-4 enzymatic activity plays a role in recovering from acute liver damage. Interestingly, the severe KC population reduction in acute and chronic liver injury was concomitant with increased CD26/DPP-4 serum levels. Remarkably, both chronic liver damage and noninflammatory depletion of KCs by clodronate liposomes were marked by oscillation in CD26/DPP-4 serum activity that mirrored the kinetics of liver KC depletion/recovery. Conclusion:CD26/DPP-4 enzymatic activity contributes to necrosis resolution during recovery from acute liver injury. Serum CD26/DPP-4 is elevated when severe perturbations are imposed on KC populations, regardless of patent liver damage. We propose that serum CD26/DPP-4 is a potential systemic surrogate marker of severe impairments in the KC population imposed by clinical and subclinical liver conditions.
- Contribution of PTPN22, CD28, CTLA-4 and ZAP-70 variants to the risk of type 1 diabetes in TunisiansPublication . Zouidi, Ferjeni; Stayoussef, Mouna; Bouzid, Dorra; Fourati, Hajer; Abida, Olfa; Ayed, M. Ben; Kammoun, Thouraya; Hachicha, Monjia; Penha-Gonçalves, Carlos; Masmoudi, HatemType 1 diabetes (T1D) is caused by an immune-mediated destruction of the insulin-producing β-cells. Several studies support the involvement of T cell activation molecules. In order to underline the role of the genes involved in this pathway, we investigated, using the Sequenom MassARRAY platform, polymorphisms of sixteen single-nucleotide polymorphisms (SNPs) belonging to PTPN22, CD28, CTLA-4, and ZAP-70 genes in 76 T1D patients and 162 unrelated healthy controls from Southern Tunisia. We confirmed the association with PTPN22 (rs2476601, Corrected P (Pcorr)=0.002, OR=6.20) and CD28 gene (rs1879877, Pcorr=0.003; OR=4.27 and rs3181096, Pcorr=0.02; OR=1.73). We also identified an association with rs17695937 of ZAP-70 gene (Pcorr=0.02, OR=1.87). Our results suggest a significant effect on T1D susceptibility for A-C-A-G-C and T-C-C-T-A-C haplotypes, of ZAP-70 and CD28 genes, respectively. In addition, (A-G-C) combination of ZAP-70/CD28 gene was significantly increased in T1D patients as compared to controls, suggesting the possible interaction between these genes. These results confirm the involvement of PTPN22 and CD28 genes in the genetic susceptibility to T1D. Interestingly, ZAP-70 seems to contribute to the susceptibility to the disease in our population. However, this finding has to be confirmed in further studies.
- Association of BANK1 and cytokine gene polymorphisms with type 1 diabetes in TunisiaPublication . Zouidi, Ferjani; Stayoussef, Mouna; Bouzid, Dorra; Fourati, Hajer; Abida, Olfa; João, Costa; Ayed, Mourad Ben; Fakhfakh, Raouia; Thouraya, Kammoun; Monjia, Hachicha; Carlos, Penha-Gonçalves; Masmoudi, HatemType 1 diabetes (T1D) is an autoimmune disease (AID) with both genetic and environmental components. We aimed to investigate the genetic association of polymorphisms in genes previously linked with other AIDs, namely BANK1, IL15 and IL2/IL21 region. A total of 76 T1D patients and 162 controls from Southern Tunisia were recruited for a case-control association study investigating the relationship between sixteen SNPs of the BANK1, IL15 and IL2/IL21 gene region and T1D. In the BANK1 gene, G allele and GG genotype of rs3733197 were significantly increased in the group of T1D patients compared to controls. In addition, in the IL15 gene, the minor allele A of rs10519613 polymorphism was significantly higher in patients than in controls. No significant association was found for SNPS in IL2/IL21 gene region. The analysis of the haplotype structure revealed the G-C-A-C-T haplotype of the IL15 gene as associated with a reduction in the risk of developing T1D, while A-T-A-C-T haplotype increased the risk of developing the disease. Furthermore, in the IL2/IL21 region, only one haplotype consisting of eight SNPs was markedly associated with T1D susceptibility. Moreover, G-C combination of the BANK1/IL15 was significantly increased in T1D patients, compared to controls. Our results establish BANK1 and IL15 as new T1D genetic susceptibility factors and replicate the association of the 4q27 region with T1D. Our data agree with the effect previously observed for other autoimmune conditions and delineate a shared underlying mechanism.
- Autoimmune diseases association study with the KIAA1109–IL2–IL21 region in a Tunisian populationPublication . Bouzid, Dorra; Fourati, Hajer; Amouri, Ali; Marques, Isabel; Abida, Olfa; Tahri, Nabil; Penha-Gonçalves, Carlos; Masmoudi, HatemAutoimmune diseases (ADs) share several genetic factors resulting in similarity of disease mechanisms. For instance polymorphisms from the KIAA1109-interleukin 2 (IL2)-IL21 block in the 4q27 chromosome, has been associated with a number of autoimmune phenotypes. Here we performed a haplotype-based analysis of this AD related region in Tunisian patients. Ten single nucleotide polymorphisms (rs6534347, rs11575812, rs2069778, rs2069763, rs2069762, rs6852535, rs12642902, rs6822844, rs2221903, rs17005931) of the block were investigated in a cohort of 93 systemic lupus erythematosus (SLE), 68 ulcerative colitis (UC), 39 Crohn's disease (CD) patients and 162 healthy control subjects of Tunisian origin. In SLE population, haplotypes AGCAGGGTC, AGAAGAGTC, AGAAGGGTC and AGCCGAGTC provided significant evidence of association with SLE risk (p = 0.013, 0.028, 0.018 and 0.048, respectively). In the UC population, haplotype AGCCGGGTC provided a susceptibility effect for UC (p = 0.025). In the CD population, haplotype CAGGCC showed a protective effect against the development of CD (p = 0.038). Haplotype AAGGTT provided significant evidence to be associated with CD risk (p = 0.007). Our results support the existence of the associations found in the KIAA1109/IL2/IL21 gene region with ADs, thus confirms that the 4q27 locus may contribute to the genetic susceptibility of ADs in the Tunisian population.
- Association of TCR/CD3, PTPN22, CD28 and ZAP70 gene polymorphisms with type 1 diabetes risk in Tunisian population: Family based association studyPublication . Ferjeni, Zouidi; Bouzid, D.; Fourati, H.; Stayoussef, M.; Abida, O.; Kammoun, T.; Hachicha, M.; Penha-Gonçalves, C.; Masmoudi, H.Type 1 diabetes (T1D) is caused by an immune-mediated destruction of the insulin-producing β-cells. Several studies support the involvement of T cell activation molecules in the pathogenesis of T1D. In order to underline the role of the genes involved in this activation pathway, we investigated, using the Sequenom MassARRAY platform, 45 single-nucleotide polymorphisms (SNPs) belonging to TCR/CD3, CD28, ZAP70, and PTPN22 genes in 59 T1D Tunisian families. In the current study, we identified an association with rs706 (Z score=2.782; p=0.005) of TCRβ gene. We also demonstrated that rs10918706 in the intron of the CD3z gene was associated with increased risk of T1D (Z score 2.137; p=0.032). In the same region, rs2949655 (Z score=2.101; p=0.035) and rs1214611 (Z score=4.036; p=0.00005) showed a genotype association with the risk of T1D. When haplotypes were constructed, GAA haplotype displayed significant association with T1D (Z score=2.135; p=0.032), while GGA haplotype (Z score=-1.988; p=0.046) was negatively associated with the disease. We also identified an association with rs3181096 (Z score=2.177; p=0.029), rs17695937 (Z score =2.111; p=0.034) and rs2488457 (Z score=2.219; p=0.026), respectively of CD28, ZAP70 and PTPN22 genes. In addition, our results suggest a significant effect on T1D susceptibility for AC (Z score=2.30; p=0.02) and CTGGC (Z score=2.309, p=0.02) haplotypes of ZAP70 and PTPN22 genes, respectively. While, the GTCT (Z score=-2.114, p=0.034) and CTAGG (Z score=-2.121, p=0.033) haplotypes of CD28 and PTPN22 genes, may confer protection against T1D. These findings confirm the role of PTPN22 and CD28 involved in the T cell activation pathway in the development of T1D in Tunisian families. Interestingly, ZAP70 and TCRβ/CD3z seem to contribute to the susceptibility to the disease in our population. However, this finding has to be confirmed in further studies.
- Multiple enteropathogenic viruses in a gastroenteritis outbreak in a military exercise of the Portuguese ArmyPublication . Lopes-João, António; Costa, Inês; Mesquita, João R.; Oleastro, Mónica; Penha-Gonçalves, Carlos; Nascimento, Maria S.J.Background Gastroenteritis is one of the most common infectious diseases in the military populations and can diminish operational effectiveness and impede force readiness. Objectives The present study investigates the cause and the source of an acute gastroenteritis outbreak that occurred during a military exercise of the Portuguese Army, in February 2013. Study Design A retrospective investigation was performed and stool samples, food items and water were screened for common foodborne bacteria and viruses, namely Norovirus GI, Norovirus GII, Astrovirus, Rotavirus, Adenovirus and Sapovirus. Results From the total of 160 soldiers that participated in the military exercise 20 developed gastroenteritis (attack rate of 12.5%). Symptoms were predominantly vomiting (n = 17, 85%) and diarrhoea (n = 9, 45%). The first cases occurred 24–48 h after drinking water from the creek, the plausible origin of the outbreak. The epidemic peak was registered 2 days after and the last cases 6 days after, upon returning to base. No pathogenic bacteria were found in stools however virological analysis revealed the presence of multiple enteropathogenic viruses, namely Norovirus GI (GI.3), Norovirus GII (GII.4 New Orleans 2009), Astrovirus and Sapovirus, as single or co-infections. Food and water samples were not tested for the presence of viruses due to exhaustion of samples on bacteriological analysis. Conclusions To the best of our knowledge this is the first report of a viral gastroenteritis outbreak among military personnel in the Portuguese Army.
- Serum Pantetheinase/Vanin Levels Regulate Erythrocyte Homeostasis and Severity of MalariaPublication . Rommelaere, Samuel; Millet, Virginie; Rihet, Pascal; Atwell, Scott; Helfer, Emmanuèle; Chasson, Lionel; Beaumont, Carole; Chimini, Giovanna; Sambo, Maria do Rosário; Viallat, Annie; Penha-Gonçalves, Carlos; Galland, Franck; Naquet, PhilippeTissue pantetheinase, encoded by the VNN1 gene, regulates response to stress, and previous studies have shown that VNN genes contribute to the susceptibility to malaria. Herein, we evaluated the role of pantetheinase on erythrocyte homeostasis and on the development of malaria in patients and in a new mouse model of pantetheinase insufficiency. Patients with cerebral malaria have significantly reduced levels of serum pantetheinase activity (PA). In mouse, we show that a reduction in serum PA predisposes to severe malaria, including cerebral malaria and severe anemia. Therefore, scoring pantetheinase in serum may serve as a severity marker in malaria infection. This disease triggers an acute stress in erythrocytes, which enhances cytoadherence and hemolysis. We speculated that serum pantetheinase might contribute to erythrocyte resistance to stress under homeostatic conditions. We show that mutant mice with a reduced serum PA are anemic and prone to phenylhydrazine-induced anemia. A cytofluorometric and spectroscopic analysis documented an increased frequency of erythrocytes with an autofluorescent aging phenotype. This is associated with an enhanced oxidative stress and shear stress-induced hemolysis. Red blood cell transfer and bone marrow chimera experiments show that the aging phenotype is not cell intrinsic but conferred by the environment, leading to a shortening of red blood cell half-life. Therefore, serum pantetheinase level regulates erythrocyte life span and modulates the risk of developing complicated malaria.
- CREM variant rs17583959 conferred susceptibility to T1D risk in the Tunisian familiesPublication . Zouidi, Ferjani; Bouzid, D.; Fourati, H.; Fakhfakh, R.; Kammoun, T.; Hachicha, M.; Penha-Gonçalves, C.; Masmoudi, H.Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the destruction of insulin-producing pancreatic β-cells by autoreactive T cells. Studies in animal models, such as the non-obese diabetic (NOD) mouse reveal that this disease is under the control of several genes that encode molecules implicated in regulation of transcription factors and in T cell activation. In order to underline the role of the genes involved in this regulation pathways, we investigated, using the Sequenom MassARRAY platform, 13 single-nucleotide polymorphisms (SNPs) belonging to CREM, IRF5, STAT4, and STAT5a/b genes in 59 T1D Tunisian families. In the current study, we identified an association with rs17583959 (allele G; Z score=2.27; p=0.02; Genotype GG: score=1.96; p=0.04) of CREM gene. In LD analysis a strong LD between the 3 CREM variants (Block 1) was detected; rs2384352 was in complete LD with rs1148247. When haplotypes were constructed between CREM polymorphisms (rs1148247, rs17583959, rs2384352), AGA haplotype (H2) was significantly over-transmitted from parents to affected offspring (Z score=2.988; P=0.002) and may confer a risk for T1D disease. Whereas, AAG haplotype (H5) (Z score=-2.000; p=0.045) was less transmitted than expected to affected children suggesting its protective effect against T1D pathology. No significant association in IRF5, STAT4, and STAT5a/b genes were observed. In conclusion, this study shows an eventually involvement of CREM gene in the development of T1D pathology in Tunisian families. These facts are consistent with a major role for transcription factor genes involved in the immune pathways in the control of autoimmunity. Further researches of association and functional analysis across populations are needed to confirm these findings.