Repository logo
 

OB- Artigos

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 5
  • A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages
    Publication . Pereira, Mafalda M. A.; Mahú, Inês; Seixas, Elsa; Martinéz-Sánchez, Noelia; Kubasova, Nadiya; Pirzgalska, Roksana M; Cohen, Paul; Dietrich, Marcelo O; López, Miguel; Bernardes, Gonçalo J. L.; Domingos, Ana I.
    Conditional expression of diphtheria toxin receptor (DTR) is widely used for tissue-specific ablation of cells. However, diphtheria toxin (DT) crosses the blood-brain barrier, which limits its utility for ablating peripheral cells using Cre drivers that are also expressed in the central nervous system (CNS). Here we report the development of a brain-sparing DT, termed BRAINSPAReDT, for tissue-specific genetic ablation of cells outside the CNS. We prevent blood-brain barrier passage of DT through PEGylation, which polarizes the molecule and increases its size. We validate BRAINSPAReDT with regional genetic sympathectomy: BRAINSPAReDT ablates peripheral but not central catecholaminergic neurons, thus avoiding the Parkinson-like phenotype associated with full dopaminergic depletion. Regional sympathectomy compromises adipose tissue thermogenesis, and renders mice susceptible to obesity. We provide a proof of principle that BRAINSPAReDT can be used for Cre/DTR tissue-specific ablation outside the brain using CNS drivers, while consolidating the link between adiposity and the sympathetic nervous system.
  • Leptin Resistance and the Neuro-Adipose Connection
    Publication . Barateiro, Andreia; Mahú, Ines; Domingos, Ana I.
    Obesity is a public health concern affecting both genders at all ages around the world. The worldwide prevalence of obesity is rapidly increasing and has nearly doubled between 1980 and 2016. Consequently, it places a large financial burden on the economy due to the increased morbidity and mortality, as well as the reduced quality of life and development of chronic diseases. Obesity is typically characterized by excessive amounts of the hormone leptin, a cytokine-like molecule produced in white adipose tissue (WAT) that is secreted into the systemic circulation. The circulating levels of leptin are proportional to the amount of fat and function as the afferent signal in a negative feedback loop that seeks to maintain body fat in a very narrow range of variation. Leptin has a central role in body weight homeostasis due to its inhibition of food intake inhibition and stimulation of energy expenditure. The effect of leptin on body weight is attributed to its action in a specific brain region, the hypothalamus. Hence, leptin is released by adipocytes in proportion to the size of fat depots, enters the circulation, and reaches the central nervous system by crossing the blood-brain barrier (BBB) through receptor-mediated endocytosis in which it acts mainly through the arcuate nucleus of the hypothalamus to mediate most of its actions. Specifically, leptin modulates the activity of two types of neurons to inhibit appetite, through production of anorexigenic peptides by the pro-opiomelanocortin (POMC) neurons and suppression of the orexigenic agouti-related protein (AgRP) neurons. Besides acting on the hypothalamus to suppress appetite, leptin also induces lipolysis in WAT and thermogenesis in brown adipose tissue (BAT) and browning of WAT, via the activation of the sympathetic nervous system (SNS). However, in most obese subjects, despite its high serum levels, leptin fails to perform its physiological functions and consequently fails to reduce weight. This effect has been coined as leptin resistance.
  • Curcumin Inhibits Gastric Inflammation Induced by Helicobacter Pylori Infection in a Mouse Model
    Publication . Santos, António; Lopes, Teresa; Oleastro, Mónica; Gato, Inês; Floch, Pauline; Benejat, Lucie; Chaves, Paula; Pereira, Teresa; Seixas, Elsa; Machado, Jorge; Guerreiro, António
    Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available.
  • Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar
    Publication . Domingos, Ana I; Sordillo, Aylesse; Dietrich, Marcelo O; Liu, Zhong-Wu; Tellez, Luis A; Vaynshteyn, Jake; Ferreira, Jozelia G; Ekstrand, Mats I; Horvath, Tamas L; de Araujo, Ivan E; Friedman, Jeffrey M
    Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5(-/-) mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001.
  • The reward value of sucrose in leptin-deficient obese mice
    Publication . Domingos, Ana I.; Vaynshteyn, Jake; Sordillo, Aylesse; Friedman, Jeffrey M.
    Leptin-deficient patients report higher "liking" ratings for food, and leptin replacement therapy normalizes these ratings even before weight loss is achieved. Since animals cannot report their ratings, we studied the relationship between leptin and food reward in leptin-deficient ob/ob mice using a optogenetic assay that quantifies the reward value of sucrose. In this assay, mice chose between one sipper dispensing the artificial sweetener sucralose coupled to optogenetic activation of dopaminergic (DA) neurons, and another sipper dispensing sucrose. We found that the reward value of sucrose was high under a state of leptin deficiency, as well as at a dose of leptin that does not suppress food intake (12.5 ng/h). Treatment with higher doses of leptin decreased the reward value of sucrose before weight loss was achieved (100 ng/h), as seen in leptin-deficient patients. These results phenocopy in mice the behavior of leptin-deficient patients.