Repository logo
 

EM - Artigos

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 17
  • Dynamics of Histone H3 Deposition In Vivo Reveal a Nucleosome Gap-Filling Mechanism for H3.3 to Maintain Chromatin Integrity
    Publication . Ray-Gallet, Dominique; Woolfe, Adam; Vassias, Isabelle; Pellentz, Céline; Lacoste, Nicolas; Puri, Aastha; Schultz, David C.; Pchelintsev, Nikolay A.; Adams, Peter D.; Jansen, Lars E.T.; Almouzni, Geneviève
    Establishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.1 incorporation via CAF-1 enables an alternative H3.3 deposition at replication sites via HIRA. Conversely, the H3.3 incorporation throughout the cell cycle via HIRA cannot be replaced by H3.1. ChIP-seq analyses reveal correlation between HIRA-dependent H3.3 accumulation and RNA pol II at transcription sites and specific regulatory elements, further supported by their biochemical association. The HIRA complex shows unique DNA binding properties, and depletion of HIRA increases DNA sensitivity to nucleases. We propose that protective nucleosome gap filling of naked DNA by HIRA leads to a broad distribution of H3.3, and HIRA association with Pol II ensures local H3.3 enrichment at specific sites. We discuss the importance of this H3.3 deposition as a salvage pathway to maintain chromatin integrity.
  • Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant
    Publication . Earnshaw, W. C.; Allshire, R. C.; Black, B. E.; Bloom, K.; Brinkley, B. R.; Brown, W.; Cheeseman, I. M.; Choo, K. H. A.; Copenhaver, G. P.; DeLuca, J. G.; Desai, A.; Diekmann, S.; Erhardt, S.; Fitzgerald-Hayes, M.; Foltz, D.; Fukagawa, T.; Gassmann, R.; Gerlich, D. W.; Glover, D. M.; Gorbsky, G. J.; Harrison, S. C.; Heun, P.; Hirota, T.; Jansen, L. E. T.; Karpen, G.; Kops, G. J. P. L.; Lampson, M. A.; Lens, S. M.; Losada, A.; Luger, K.; Maiato, H.; Maddox, P. S.; Margolis, R. L.; Masumoto, H.; McAinsh, A. D.; Mellone, B. G.; Meraldi, P.; Musacchio, A.; Oegema, K.; O’Neill, R. J.; Salmon, E. D.; Scott, K. C.; Straight, A. F.; Stukenberg, P. T.; Sullivan, B. A.; Sullivan, K. F.; Sunkel, C. E.; Swedlow, J. R.; Walczak, C. E.; Warburton, P. E.; Westermann, S.; Willard, H. F.; Wordeman, L.; Yanagida, M.; Yen, T. J.; Yoda, K.; Cleveland, D. W.
    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.
  • A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly
    Publication . Stankovic, Ana; Guo, Lucie Y.; Mata, João F.; Bodor, Dani L.; Cao, Xing-Jun; Bailey, Aaron O.; Shabanowitz, Jeffrey; Hunt, Donald F.; Garcia, Benjamin A.; Black, Ben E.; Jansen, Lars E.T.
    Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell-cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, that mediated specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A.
  • Enhancer regions show high histone H3.3 turnover that changes during differentiation
    Publication . Deaton, Aimee M; Gómez-Rodríguez, Mariluz; Mieczkowski, Jakub; Tolstorukov, Michael Y; Kundu, Sharmistha; Sadreyev, Ruslan I; Jansen, Lars ET; Kingston, Robert E
    The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation.
  • Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere
    Publication . Falk, S. J.; Guo, L. Y.; Sekulic, N.; Smoak, E. M.; Mani, T.; Logsdon, G. A.; Gupta, K.; Jansen, L. E. T.; Van Duyne, G. D.; Vinogradov, S. A.; Lampson, M. A.; Black, B. E.
    Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.
  • Basic properties of epigenetic systems: lessons from the centromere
    Publication . Gómez-Rodríguez, Mariluz; Jansen, Lars ET
    Chromatin-based epigenetic inheritance cooperates with cis-acting DNA sequence information to propagate gene expression states and chromosome architecture across cell division cycles. Histone proteins and their modifications are central components of epigenetic systems but how, and to what extent, they are propagated is a matter of continued debate. Centromeric nucleosomes, marked by the histone H3 variant CENP-A, are stable across mitotic divisions and are assembled in a locus specific and cell cycle controlled manner. The mechanism of inheritance of this unique chromatin domain has important implications for how general nucleosome transmission is controlled in space and time.
  • A two-step mechanism for epigenetic specification of centromere identity and function
    Publication . Fachinetti, Daniele; Diego Folco, H.; Nechemia-Arbely, Yael; Valente, Luis P.; Nguyen, Kristen; Wong, Alex J.; Zhu, Quan; Holland, Andrew J.; Desai, Arshad; Jansen, Lars E. T.; Cleveland, Don W.
    The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.
  • How two become one: HJURP dimerization drives CENP-A assembly
    Publication . Bodor, Dani L; Jansen, Lars E T
    CENP‐A containing nucleosomes epigenetically specify centromere position on chromosomes. Deposition of CENP‐A into chromatin is mediated by HJURP, a specific CENP‐A chaperone. Paradoxically, HJURP binding sterically prevents dimerization of CENP‐A, which is critical to form functional centromeric nucleosomes. A recent publication in The EMBO Journal (Zasadzińska et al, 2013) demonstrates that HJURP itself dimerizes through a C‐terminal repeat region, which is essential for centromeric assembly of nascent CENP‐A.
  • Temporal control of epigenetic centromere specification
    Publication . Valente, Luis P; Silva, Mariana C C; Jansen, Lars E T
    All living organisms require accurate mechanisms to faithfully inherit their genetic material during cell division. The centromere is a unique locus on each chromosome that supports a multiprotein structure called the kinetochore. During mitosis, the kinetochore is responsible for connecting chromosomes to spindle microtubules, allowing faithful segregation of the duplicated genome. In most organisms, centromere position and function is not defined by the local DNA sequence context but rather by an epigenetic chromatin-based mechanism. Centromere protein A (CENP-A) is central to this process, as chromatin assembled from this histone H3 variant is essential for assembly of the centromere complex, as well as for its epigenetic maintenance. As a major determinant of centromere function, CENP-A assembly requires tight control, both in its specificity for the centromere and in timing of assembly. In the last few years, there have been several new insights into the molecular mechanism that allow this process to occur. We will review these here and discuss the general implications of the mechanism of cell cycle coupling of centromere inheritance.
  • Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression
    Publication . Silva, Mariana C.C.; Bodor, Dani L.; Stellfox, Madison E.; Martins, Nuno M.C.; Hochegger, Helfrid; Foltz, Daniel R.; Jansen, Lars E.T.
    Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.